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Abstract

The goal of multi-objective optimisation is to identify the Pareto front surface which
is the set obtained by connecting the best trade-off points. Typically this surface is com-
puted by evaluating the objectives at different points and then interpolating between the
subset of the best evaluated trade-off points. In this work, we propose to parameterise
the Pareto front surface using polar coordinates. More precisely, we show that any Pareto
front surface can be equivalently represented using a scalar-valued length function which
returns the projected length along any positive radial direction. We then use this repre-
sentation in order to rigorously develop the theory and applications of stochastic Pareto
front surfaces. In particular, we derive many Pareto front surface statistics of interest
such as the expectation, covariance and quantiles. We then discuss how these can be
used in practice within a design of experiments setting, where the goal is to both infer
and use the Pareto front surface distribution in order to make effective decisions. Our
framework allows for clear uncertainty quantification and we also develop advanced vi-
sualisation techniques for this purpose. Finally we discuss the applicability of our ideas
within multivariate extreme value theory and illustrate our methodology in a variety of
numerical examples, including a case study with a real-world air pollution data set.

1 Introduction

The Pareto front is often regarded as the natural generalisation of the maximum (or minimum)
for vector-valued sets. This generalisation is based on the Pareto partial ordering relation,
which gives us a way to compare between any two vectors when possible. Geometrically, the
Pareto front can be used to define a surface in the vector space which describes the best possible
trade-offs one can obtain between the different components. Capturing this surface is crucial
for many real-world applications and machine learning tasks where one is interested in jointly
maximising multiple reward criteria. Notably, this problem becomes much more challenging
when there is uncertainty in the rewards, which is very common in practice. The purpose
of this work is to address this practically important problem directly by providing the tools
and methodology required to study and effectively use Pareto front surfaces in the face of
uncertainty. To the best of our knowledge, a study of this kind is currently missing in the
literature and would be very useful for real-world practitioners who deal with these problems
in practice.

At a high level, our novel framework is based on specific polar representation of the Pareto
front surface. More precisely, we show that any Pareto front surface can be equivalently char-
acterised by its projected length function, which is a scalar-valued function that computes the
projected lengths of the polar surface along any positive radial direction. The clear benefit of
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this representation is that it is explicit and gives us an interpretable and efficient way to work
over the space of Pareto front surfaces. To demonstrate the value of our framework, we focus
our attention on the stochastic setting where the Pareto front surface itself is unknown and
random. Under this regime, our polar parameterisation result allows us to treat any random
Pareto front surface as a tractable infinite-dimensional random variable. Various statistics such
as its expectation, covariance and quantiles are then well defined and straightforward to com-
pute numerically. Importantly, these statistics are especially useful in the context of quantifying
uncertainty and making better decisions in the stochastic setting. Overall, we believe that our
methodology is very practical as it can be easily integrated into most standard decision making
workflows and there are many potential directions to extend our work even further.

1.1 Structure and contributions

The remainder of the paper is organised as follows: In Section 2, we introduce the key defini-
tions and nomenclature that will be used throughout the paper. In Section 3, we present our
framework and show that any Pareto front surface can be expressed using polar coordinates.
We then use this polar parameterisation in order to define some useful operations and concepts
on the space of Pareto front surfaces. Namely we define the concept of an order-preserving
transformation (Section 3.1), a length-based utility function (Section 3.2) and a length-based
loss function (Section 3.3). We note that whilst polar representations have been used before as
a technical tool for manipulating calculations related to hypervolume indicator [Shang et al.,
2018, Deng and Zhang, 2019, Zhang and Golovin, 2020], this is the first time to the best of our
knowledge that they have been studied in detail and proposed as a methodological tool.

In Section 4, we study the setting where the Pareto front surface is random and define many
useful statistics of interest such as the expectation (Section 4.1), covariance (Section 4.2) and
quantiles (Section 4.3), among others. We also discuss links with existing works on Pareto front
surface distributions based on ideas from random set theory (Section 4.6). We then proceed to
Section 5, where we show how these ideas can be used in practice:

• In Section 5.1, we present a novel visualisation strategy based our polar parameterisation
and we show how it is possible to construct a picture of the whole Pareto front surface
by using a family of low-dimensional slices. This can assist in situations where one is
interested in actively identifying decisions or inputs which lead to the best trade-offs for
the decision maker.

• In Section 5.2, we illustrate how all of these uncertainty quantification and visualisation
ideas can be used within a standard Bayesian experimental design setting. Specifically,
we demonstrate how these tools can be used both during an optimisation routine (Sec-
tion 5.2.1) and also in the post-decision setting (Section 5.2.2). The former stage focusses
on the problem of identifying the best experiments to run, whilst the latter stage is fo-
cussed on identifying the inputs which are most likely going lead to the desired outputs.

• In Section 5.3, we demonstrate how it is possible to adapt some prominent results from
extreme value theory to work in the multivariate setting, where the maximum is defined
using the Pareto partial ordering. This is in contrast to most existing work in multivariate
extreme value theory, which has largely focussed on the setting where the vector-valued
maximum is defined in a component-wise fashion.

• In Section 5.4, we present a case study on how some of these Pareto front ideas can be
used in order to quantify changes in the daily maximum air pollutant levels in a part of
west London.
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In Section 6, we conclude this work and include a discussion on future research directions.
Finally, in Appendix A, we include the proofs of all of the results that are stated within the
paper. The code that is needed to reproduce the figures and numerical experiments are available
in our Github repository: https://github.com/benmltu/scalarize.

2 Preliminaries

In this work, we study the properties of Pareto front surfaces, which are the surfaces obtained by
interpolating the Pareto optimum of a vector-valued set. Without loss of generality, we assume
throughout that the goal of interest is maximisation. Naturally, the minimisation problem can
also be treated by simply negating the corresponding set of vectors. Note that there are many
subtle differences in the literature when it comes to defining a Pareto front surface. For this
reason, we will now carefully define the concept of the truncated interpolated weak Pareto
front, which will be the primary focus of this work.

Definition 2.1 (Pareto domination) The weak, strict and strong Pareto domination are
denoted by the binary relations �,� and ��, respectively. We say a vector y ∈ RM weakly,
strictly or strongly Pareto dominates another vector y′ ∈ RM if

y � y′ ⇐⇒ y − y′ ∈ RM
≥0,

y � y′ ⇐⇒ y − y′ ∈ RM
≥0 \ {0M},

y �� y′ ⇐⇒ y − y′ ∈ RM
>0,

respectively, where 0M ∈ RM denotes the M-dimensional vector of zeros.

Definition 2.2 (Domination region) The Pareto domination region is defined as the collec-
tion of points which dominates (or is dominated) by a particular set of vectors A ⊆ RM , that
is

D�[A] := ∪a∈A{y ∈ RM : y � a},
where � ∈ {�,�,≺,�,≺≺,��} denotes a partial ordering relation. In addition, we denote the
truncated domination region by D�,η[A] := D�[A] ∩ D��[{η}], for any reference vector η ∈ RM

and denote the complement of any domination region by DC
� [A] := RM \ D�[A].

Definition 2.3 (Pareto optimality) Given a bounded set of vectors A ⊂ RM , a point a ∈ A
is weakly or strictly Pareto optimal if there does not exist another vector a′ ∈ A which strongly
or strictly Pareto dominates it, respectively. The collection of all weakly or strictly Pareto
optimal vectors in this set is called the weak or strict Pareto front, Yweak[A] := A∩DC

≺≺[A] and
Ystrict[A] := A ∩ DC

≺[A], respectively.

Although strict Pareto optimality is a desirable quality, it is a difficult operation to work with
because it returns a subset of the original set, which could contain an arbitrary number of points.
To address this problem, we consider working with a more relaxed notion of Pareto optimality,
which we refer to as the interpolated weak Pareto optimality (Definition 2.4). Conceptually, we
define the interpolated weak Pareto front as the interpolation of the strict Pareto front. This
interpolation defines a surface in the M -dimensional vector space. For practical convenience,
we also define the truncated interpolated weak Pareto front, which truncates1 this surface at
some reference point η ∈ RM—see Figure 1 for an illustration.

Definition 2.4 (Interpolated weak optimality) Given a bounded set of vectors A ⊂ RM ,
we define the interpolated weak Pareto front as the weak Pareto front of its weak domination

1Crudely speaking, we can recover the interpolated weak Pareto front from the truncated interpolated weak
Pareto front by sending the reference point to minus infinity: η = (ε, . . . , ε) ∈ RM and ε→ −∞.
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Figure 1: An illustration of the different Pareto fronts in M = 2 dimensions.

region after closure, that is: Y int[A] := Yweak[D�[Closure(A)]]. By truncating this surface at
some reference vector η ∈ RM , we obtain the truncated interpolated weak Pareto front Y int

η [A] :=
Y int[A] ∩ D��[{η}]. We denote the set of all possible non-empty truncated interpolated weak
Pareto fronts by Y∗η ⊂ 2RM

.

In practice, the set of objective vectors that we seek to optimise is often the output of some
vector-valued objective function g : X→ RM , where X denotes the space of feasible inputs. In
this setting, the optimal set of objectives is given by the Pareto front of the feasible objective
vectors. For example, the strict Pareto front is given by the set Ystrict[{g(x)}x∈X] ⊂ RM , whilst
the strict Pareto set is defined as the corresponding pre-image. Similarly, we can also define
the other weak variants of the Pareto front and Pareto set as well.

Remark 2.1 (Reference vector) Throughout this work, we will assume that the reference
vector η ∈ RM is known and fixed by the decision maker. Intuitively, this parameter is just
used as a way to lower bound the set of vectors that we are interested in targetting. In the
multi-objective literature, it is common to see this vector set to an estimate that is equal or close
the nadir point, which is the vector comprised of the worst possible values for each objective:
η(m) = minx∈X g

(m)(x) for objectives m = 1, . . . ,M . In fact, some authors have suggested using
a reference point that is slightly worse than the nadir when we are interested in evaluating the
performance of a multi-objective algorithm [Ishibuchi et al., 2017].

Nomenclature. For convenience, unless otherwise stated, we will from now on refer to a set
as being a Pareto front or Pareto front surface if it is a truncated interpolated weak Pareto front
(Definition 2.4). We will refer to a point as being Pareto optimal if it lies on this truncated
interpolated weak Pareto front. In addition, we will refer to the set of all non-empty truncated
interpolated weak Pareto front Y∗η as the set of all Pareto fronts or Pareto front surfaces.

3 Polar parameterisation

We now present the main result of this paper (Theorem 3.1), which states that all non-empty
Pareto front surfaces are isomorphic to the set of positive unit vectors

SM−1+ := {z ∈ RM
>0 : ||z||L2 = 1} ∈ Y∗0M

.

In particular, we present an explicit representation for this isomorphism in (5), which we refer
to as the polar parameterisation of a Pareto front surface. The name of this representation
is motivated by the fact that we rely on the hyperspherical polar coordinates transformation
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in order to derive this result. The intuitive idea behind this result is concisely described in
Figure 2. Informally speaking, we can identify each Pareto optimal point by drawing a line
from the reference vector η ∈ RM along a positive direction λ ∈ SM−1+ . If we know the length
of these lines `η,λ ∈ R when it intersects the Pareto front surface, then we can reconstruct the
Pareto front surface by using a linear mapping: η+ `η,λλ ∈ RM for λ ∈ SM−1+ . In the following
paragraphs, we will formalise this idea more concretely and give an explicit construction for
this length function.

Polar coordinates. To derive our polar parameterisation result, we rely on the following
coordinate system transformation Tη : D��[{η}]→ SM−1+ × R>0,

Tη(y) := (λ∗η(y), sη,λ∗η(y)(y)) =

(
y − η
||y − η||L2

, ||y − η||L2

)
, (1)

which maps any vector y ∈ D��[{η}] to a positive unit vector λ∗η(y) ∈ SM−1+ and a positive
scalar sη,λ∗η(y)(y) > 0. Intuitively, this mapping can be interpreted as a variant of the hyper-

spherical polar coordinates transformation centred at the reference vector η ∈ RM . In our
setting, the positive unit vector plays the role of the angle, whilst the positive scalar plays the
role of the projected length. The key difference between this transformation and the standard
hyperspherical polar coordinates transformation is that here we restrict our attention to just
the angles lying in the positive orthant. These positive directions are the only ones which will
lead to a Pareto optimal point. Formally, the coordinate transformation in (1) relies on the
length2 scalarisation function sη,λ : RM → R,

sη,λ(y) := Length[Lη,λ ∩ (η,y)] = min
m=1,...,M

max(y(m) − η(m), 0)

λ(m)
, (2)

which is a non-negative3 function that is defined for all vectors y ∈ RM . Conceptually, when the
objective vector lies in the truncated space y ∈ D��[{η}], then the length scalarisation function
computes the length of the line Lη,λ := {η + tλ : t ∈ R} lying in the open hyper-rectangle
(η,y) ⊂ RM—see the left of Figure 3 for an illustration of this intuition in two dimensions.
Consequently, the optimal direction function λ∗η : D��[{η}]→ SM−1+ is the function that returns
the largest projected length

λ∗η(y) :=
y − η
||y − η||L2

∈ arg max
λ∈SM−1

+

sη,λ(y) (3)

for any vector y ∈ D��[{η}] lying in the truncated space. Note that to invert this coordinate
transformation we can simply apply the linear transformation T −1η : SM−1+ × R>0 → D��[{η}],
where T −1η ((λ, l)) := η + lλ for any (λ, l) ∈ SM−1+ × R>0.

Polar surfaces. By construction, each reference line Lη,λ is pointing in an increasing direc-
tion. This implies that each reference line should intersect the Pareto front surface in exactly
one point if it is non-empty. If this is not the case, then we get a contradiction to Pareto
optimality. Using this observation, we define the set of polar surfaces Lη ⊂ 2RM

, in Defini-
tion 3.1, to be the set of vectors lying in the truncated space4 which satisfies this intersection
constraint.

2This scalarisation function has also been referred to in the literature as an achievement scalarisation function
[Ishibuchi et al., 2009, Deb and Jain, 2012].

3The length scalarisation function is positive on the truncated space D��[{η}] and zero everywhere else.
4Note that we have also included the set {η} ∈ Lη in Definition 3.1. This subtle inclusion is made in order

to accommodate for the degenerate setting—see Remark 3.1.
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Figure 2: An illustration of the polar parameterisation result in M = 2 dimensions.

Definition 3.1 (Polar surfaces) For any reference vector η ∈ RM , a set A ⊆ RM is called
a polar surface, A ∈ Lη, if and only if the following statement holds:

A ⊆ D��[{η}] ∪ {η} and |A ∩ Lη,λ| = 1 for all λ ∈ SM−1+ ,

where | · | denotes the cardinality of a set. Moreover, for this set of polar surfaces Lη, we define
the projected length function `η,λ : Lη → R≥0 as the function which returns the L2-distance of
the intersected point along any positive direction λ ∈ SM−1+ :

`η,λ[A] = max
a∈A∩Lη,λ

||a||L2

for any polar surface A ∈ Lη.

Note that the projected lengths provide a dual representation of a polar surface, that is

A ∈ Lη ⇐⇒ A = {η + `η,λ[A]λ ∈ RM : λ ∈ SM−1+ }. (4)

In other words, we can interpret the set of polar surfaces Lη as a set of sets of vectors which
can be completely characterised by its projected lengths. Geometrically speaking, any polar
surface A ∈ Lη can be obtained by translating and then stretching the set of positive unit
vectors SM−1+ along the positive radial directions. Our main result in Theorem 3.1 states that
the set of all Pareto front surfaces is indeed a special subset of this set: Y∗η ⊂ Lη. Precisely, it
is the subset where the Pareto partial ordering is preserved and the projected length function
has an explicit formula given in terms of the length scalarisation function (2). We present the
proof of this result in Appendix A.1 and an illustration of it in Figure 2.

Theorem 3.1 (Polar parameterisation) For any bounded set of vectors A ⊂ RM and ref-
erence vector η ∈ RM , if the corresponding Pareto front surface is not empty Y int

η [A] 6= ∅, then
it admits the following polar parameterisation:

Y int
η [A] =

{
η + sup

a∈A
sη,λ(a)λ ∈ RM : λ ∈ SM−1+

}
(5)

where `η,λ[Y int
η [A]] = supa∈A sη,λ(a) is the projected length along λ ∈ SM−1+ .

Remark 3.1 (Singleton front) When the Pareto front surface is empty, Y int
η [A] = ∅, then

the right hand side of (5) evaluates to the degenerate polar surface {η} ∈ Lη. This event can
happen when the reference vector η ∈ RM is set too aggressively in such a way as it weakly
dominates the entire feasible objective space.
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Figure 3: An illustration of the length-based scalarisation functions in M = 2 dimensions.

Remark 3.2 (Conceptual idea) The explicit form of the polar parameterisation (5) can be
derived in an constructive manner. Firstly, one can show that the Pareto front surface of a
single point a ∈ D��[{η}] can be written as the polar surface

Y int
η [{a}] = {η + sη,λ(a)λ ∈ RM : λ ∈ SM−1+ } ∈ Lη.

Consequently, we can then determine the Pareto front surface of any set of points A ⊂ D��[{η}]
by simply computing the union of the corresponding individual Pareto front surfaces and then
removing all the points which are sub-optimal, that is

Y int
η [A] = Y int

η [∪a∈AY int
η [{a}]]

= Y int
η [{η + sη,λ(a)λ ∈ RM : a ∈ A,λ ∈ SM−1+ }]

=

{
η + sup

a∈A
sη,λ(a)λ ∈ RM : λ ∈ SM−1+

}
.

Remarkably, this overall procedure turns out to be equivalent to just retaining the points which
achieve the maximal projected lengths along each positive direction λ ∈ SM−1+ . An illustration
of this conceptual idea is presented in Figure 4. Note however that the proof of the result in
Appendix A.1 does not actually follow this intuitive construction. Instead, our proof is derived
in a more technical way by taking advantage of a well-known optimisation result regarding the
Chebyshev scalarisation function [Miettinen, 1998, Part 2, Theorem 3.4.5]. The primary reason
why we take this more general approach is to ensure that our polar parameterisation result holds
for sets lying in the whole objective space RM as opposed to just the truncated objective space
D��[{η}].
Remark 3.3 (Other representations) The coordinate system transformation that we per-
formed in (1) is appealing because it admits a representation for the Pareto front surface, which
is simple, explicit and has a linear dependency on the projected length values. Nevertheless, we
can easily obtain other nonlinear representations of a Pareto front surface by taking advantage
of transformation functions. For example, let τ : RM → RM denote an invertible and strictly
monotonically increasing transformation function such that y � y′ ⇐⇒ τ(y) � τ(y′) for
any y,y′ ∈ RM . Then, by a simple monotonicity argument, we can show that the following
parameterisation of the Pareto front surface is also valid:

Y int
η [A] =

{
τ−1
(
τ(η) + sup

a∈A
sτ(η),λ(τ(a))λ

)
∈ RM : λ ∈ SM−1+

}
.

Intuitively, this reformulation works by performing the polar parameterisation in the trans-
formed space before inverting the result. Note that strict monotonicity is required here be-
cause we want the Pareto front surface to be invariant under these transformations: Y int

η [A] =
τ−1(Y int

τ(η)[τ(A)]).

7



y(1)

y
(2

)

Y int
η [Y1]

y(1)

y
(2

)

Y int
η [Y2]

y(1)

y
(2

)

Y int
η [Y1 ∪ Y2]

Reference vector: η ∈ RM
Objective vectors: Yn ⊂ RM
Truncated weak Pareto front: Y int

η [Yn] ⊂ RM

Truncated reference lines: Lη,λ ∩ D�,η[Y int
η [Yn]] ⊂ RM

Figure 4: An illustration of the polar parameterisation associated with a set of two points.

Remark 3.4 (Computational cost) For a finite set A ⊂ RM , the worst-case cost involved
with computing the strictly Pareto optimal front Ystrict[A] ⊂ RM is O(|A|2M). In contrast,
the worst-case cost involved with computing a finite approximation of the polar parameterised
Pareto front surface Y int

η [A] ⊂ RM is O(|Λ||A|M), where Λ = {λ1,λ2, . . . } denotes a finite set
of positive unit vectors.

3.1 Order-preserving transformations

The polar parameterisation result in Theorem 3.1 tells us that any Pareto front surface is
completely defined by its projected lengths. Conceptually, this means that we can define
transformations on the space of Pareto front surfaces by simply applying transformations on
the projected lengths. As long as these transformation operations preserve the Pareto partial
ordering, then we can be assured that resulting set is also a valid Pareto front surface. In
Proposition 3.1 below, we give two necessary and sufficient conditions for this to happen.
The first condition (C1) states that the projected lengths have to be positive—this condition
ensures that the resulting Pareto front surface is non-empty. The second condition (C2) is
the Pareto optimality condition—this ensures that we cannot find two vectors in the set such
that one strongly dominates the other. The necessity of this latter condition follows from the
spirit of Lemma 3.1, which presents some equivalent statements for Pareto domination based
on the length scalarisation function (2). The proof of both of these result are presented in
Appendix A.3 and Appendix A.2, respectively.

Lemma 3.1 (Domination equivalence) For any Pareto front surface A∗ ∈ Y∗η and vector
y ∈ D��[{η}], we have the following equivalences:

y ∈ D�,η[A∗] ⇐⇒ sη,λ∗η(y)(y) ≤ `η,λ∗η(y)[A
∗],

y ∈ D≺≺,η[A∗] ⇐⇒ sη,λ∗η(y)(y) < `η,λ∗η(y)[A
∗],

y ∈ D��,η[A∗] ⇐⇒ sη,λ∗η(y)(y) > `η,λ∗η(y)[A
∗],

y ∈ D�,η[A∗] ⇐⇒ sη,λ∗η(y)(y) ≥ `η,λ∗η(y)[A
∗],

where sη,λ∗η(y)(y) = ||y − η||L2 and `η,λ∗η(y)[A
∗] = maxa∈A∗ sη,λ∗η(y)(a).

Proposition 3.1 (Pareto front conditions) Consider a polar surface A ∈ Lη, then this set
is a Pareto front surface, that is A = Y int

η [A], if and only if the following two conditions holds:

C1. The positive lengths condition: `η,λ[A] > 0 for all λ ∈ SM−1+ .

C2. The maximum ratio condition: maxm=1,...,M
`η,λ[A]λ

(m)

`η,υ [A]υ(m) ≥ 1 for all λ,υ ∈ SM−1+ .

Proposition 3.1 gives us two simple conditions on the projected length function which can be
easily checked whenever we want to determine whether a Pareto front surface is valid. For
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Figure 5: An illustration of some algebraic operations on the space of Pareto front surfaces in M = 2 dimen-
sions. For these examples, we set the scalar multipliers to be α = 2 and ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

convenience, we will say a transformation (or an operation) acting on the space of Pareto front
surfaces is order-preserving if the resulting projected length function satisfies the two conditions
in Proposition 3.1. Below, we present some notable order-preserving operations which are
defined over the general space of polar surfaces. Firstly, we present the union operation in
Example 3.1, which formalises the idea described in Remark 3.2.

Example 3.1 (Union) Consider two Pareto front surfaces A∗, B∗ ∈ Y∗η, then by Theorem 3.1,
we can compute the Pareto front surface of the union of these two sets by simply taking the
maximum of the projected lengths, that is

Y int
η [A∗ ∪B∗] = {η + max(`η,λ[A∗], `η,λ[B∗])λ ∈ RM : λ ∈ SM−1+ } ∈ Y∗η.

Besides this, we also define the addition and scalar multiplication operation over the space
of polar surfaces in Example 3.2 and Example 3.3, respectively. These two concepts are very
useful because they give us a simple way to perform standard linear operations over the space
of polar surfaces. Later on, in Section 4, we will implicitly use these linear operations in order
to define the concept of integration over the space of Pareto front surfaces. Specifically, we will
use these ideas in Section 4.1 when we define the expected Pareto front surface.

Example 3.2 (Addition) Consider two Pareto front surfaces A∗, B∗ ∈ Y∗η, then we define
the sum of these two Pareto front surfaces by the equation

A∗ ⊕B∗ := {η + (`η,λ[A∗] + `η,λ[B∗])λ ∈ RM : λ ∈ SM−1+ } ∈ Y∗η.

This set is a Pareto front surface because it satisfies the conditions in Proposition 3.1. Note
that this sum is not necessarily equivalent to the Pareto front surface obtained by adding the two
sets together: Y int

η [A∗ +B∗] 6= A∗ ⊕B∗, where A+B := {a + b ∈ RM : a ∈ A,b ∈ B} denotes
the Minkowski sum for any set of vectors A,B ⊆ RM . We illustrate this subtle distinction in
the left plot of Figure 5.

Example 3.3 (Scalar multiplication) Consider a positive scalar ε > 0 and a Pareto front
surface A∗ ∈ Y∗η, then we define the scalar multiplication operation by the equation

ε� A∗ := {η + ε`η,λ[A∗]λ ∈ RM : λ ∈ SM−1+ } ∈ Y∗η.

This set is a Pareto front surface because it satisfies the conditions in Proposition 3.1. We
illustrate an example of this operation in the middle plot of Figure 5.

3.2 Utility functions

Utility functions are often used in multi-objective optimisation in order to assess the quality
of a Pareto front approximation that is comprised of a finite set of points. In this section, we
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introduce a family of utility functions based on the length scalarisation function (2). We show
that this family of utilities are both interpretable and satisfy many desirable properties such
as strict Pareto compliancy (Proposition 3.2).

Length-based R2 utilities. The R2 utilities [Hansen and Jaszkiewicz, 1998] are a special
family of utility functions that are constructed using scalarisation functions. They possess
many general and desirable properties [Tu et al., 2024] which makes them very appealing to
work with. By using the length scalarisation function (2), we define a special subfamily of
the R2 utilities which we call the length-based R2 utilities. Precisely, a utility function is a
length-based R2 utility if it can be written in the form

Uη,τ [Y ] := Eλ∼Uniform(SM−1
+ )

[
max
y∈Y

τ(sη,λ(y))

]
= Eλ∼Uniform(SM−1

+ )

[
τ(`η,λ[Y int

η [Y ]])
]
,

(6)

for any finite set of objective vectors Y ⊂ RM , where τ : R≥0 → R is any strictly monotonically
increasing transformation that is defined over the space of non-negative scalars. In our case,
this family of utility functions assesses the quality of a Pareto front approximation based on
some notion of the average length away from the reference vector. In this setting, a greater
utility is more desirable because it means that the set is much further away, on average, from
the reference vector.

Hypervolume indicator. A special case of these length-based R2 utilities is the hyper-
volume indicator [Zitzler and Thiele, 1998], which is a popular performance metric in multi-
objective optimisation. The hypervolume indicator of a finite set Y ⊂ RM is defined as the
volume of its truncated domination region:

UHV
η [Y ] := ν[D�,η[Y ]] = Eλ∼Uniform(SM−1

+ )

[
max
y∈Y

cM(sη,λ(y))M
]

(7)

where ν[A] :=
∫
RM 1[y ∈ A]dy is the Lebesgue measure on RM with A ⊂ RM denoting a

measurable set and 1 denoting the indicator function. The second equality above in (7) shows
that the hypervolume indicator can be written in terms of a transformation of the length
scalarisation function τHV(x) = cMx

M , where cM = πM/22−MΓ(M/2 + 1)−1 is a positive scalar
depending on the Gamma function Γ(z) =

∫∞
0
tz−1e−tdt. This equality has been proved in

many earlier works [Shang et al., 2018, Deng and Zhang, 2019, Zhang and Golovin, 2020].
In the left of Figure 6, we present a simple illustration of the hypervolume indicator in two
dimensions. Geometrically, the hypervolume scalarised value can also be interpreted as being
equal to the volume of the hypersphere with diameter sη,λ(y) ≥ 0, that is τHV(sη,λ(y)) =
ν[{z ∈ RM : ||z||L2 ≤ sη,λ(y)/2}] for any objective vector y ∈ RM—see the right of Figure 3
for a visualisation of this interpretation in two dimensions.

General properties. By design, the length-based R2 utilities (6) inherit all of the stan-
dard properties that any R2 utility satisfies such as the monotone and submodularity property
[Tu et al., 2024, Proposition 3.1]. In the following, we will additionally show that this spe-
cial subfamily of utility functions also satisfies the strict Pareto compliancy property over the
truncated space (Proposition 3.2). Loosely speaking, the strict Pareto compliancy property
(Definition 3.3) states that if a set of vectors is strictly better than another, then it should have
a higher utility. This result follows from the fact that the hypervolume indicator is strictly
Pareto compliant over the truncated space [Zitzler et al., 2003]. The full proof of this result is
presented in Appendix A.4.
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Definition 3.2 (Set domination) Consider the subsets A,B ⊂ RM , we say that the set A
weakly or strictly dominates the set B if and only if its weak Pareto domination region weakly
or strictly contains the other, respectively:

A � B ⇐⇒ D�[A] ⊇ D�[B],

A � B ⇐⇒ D�[A] ⊃ D�[B].

Definition 3.3 (Strict Pareto compliancy) A utility function U : 2RM → R is strictly
Pareto compliant over a set Y ⊆ RM , if for all finite sets A,B ⊆ Y , we have that A �
B =⇒ U(A) > U(B).

Proposition 3.2 For any reference vector η ∈ RM and strictly monotonically increasing trans-
formation τ : R≥0 → R, the corresponding length-based R2 utility (6) satisfies the strict Pareto
compliancy property over the truncated space D��[{η}] ⊂ RM .

3.3 Loss functions

Loss functions are an important aspect of decision theory because they quantify the cost asso-
ciated with performing a particular decision or action. In this section, we define the frontier
loss functions, which is a family of loss functions acting on the space of Pareto front surfaces, or
more generally the space of polar surfaces Lη. These loss functions are useful because they give
us a way to compare between any two Pareto front surfaces. Later on in Section 4.7, we will
show how these loss functions can be used in order to define various probabilistic concepts on
the space of random Pareto front surfaces such as the expectation (Section 4.1) and quantiles
(Section 4.3).

Frontier loss. We define the frontier loss function Dη,S : Lη ×Lη → R≥0 as the average loss
incurred along each reference line, that is

Dη,S[A,B] := Eλ∼Uniform(SM−1
+ )[S(`η,λ[A], `η,λ[B])] (8)

for any two polar surfaces A,B ∈ Lη, where S : R× R→ R≥0 denotes a non-negative scoring
function (or loss function). Clearly, different choices of scoring functions will lead to different
notions of loss. For example, later on in Table 1, we present some popular scoring functions
which are commonly used in the field of probabilistic forecasting—see Gneiting [2011] for a
discussion.

Frontier distance. If the scoring function S is a metric in R, then the resulting frontier
loss function can be interpreted as a type of distance function over the space of polar sur-
faces Lη. Note though that this frontier distance function will only be a pseudometric in Lη.
That is, unlike a metric, the distance between any two polar surfaces A,B ∈ Lη will be zero,
Dη,S[A,B] = 0, if and only if ν[{`η,λ[A] 6= `η,λ[B] : λ ∈ SM−1+ }] = 0. In other words, the polar
surfaces A,B ∈ Lη are equivalent under this frontier distance if and only if their projected
lengths only disagree on a set of measure zero.

Hypervolume distance. A special and interpretable case of the frontier distance function
is the hypervolume distance. The hypervolume distance between any two Pareto front surfaces
is the volume of the symmetric difference between their corresponding truncated dominated
regions. Specifically, if we restrict the distance function to the space of Pareto front surfaces
Y∗η and set SHV(x, y) := |τHV(x)− τHV(y)|, then we recover the hypervolume distance

Dη,SHV [A∗, B∗] := ν[D�,η[A∗]4D�,η[B∗]] = 2UHV
η [A∗ ∪B∗]− UHV

η [A∗]− UHV
η [B∗] (9)
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η [A∗] ≥ 0

Region with volume Dη,SHV[A∗, B∗] ≥ 0

Figure 6: An illustration of the hypervolume indicator and hypervolume distance in M = 2 dimensions.

for any Pareto front surfaces A∗, B∗ ∈ Y∗η, where A4B = (A \ B) ∪ (B \ A) denotes the
symmetric difference between the sets A,B ⊆ RM—see the right of Figure 6 for an illustration
of this distance function on a two-dimensional example.

Remark 3.5 (Generalised frontier loss) The frontier loss in (8) is defined using the length
scalarisation function (2) and a uniform distribution over the scalarisation parameters. Nat-
urally, we can generalise this construction further by considering an arbitrary scalarisation
function and parameter distribution. This generalisation bares some similarity with the con-
struction of the R2 utilities [Hansen and Jaszkiewicz, 1998, Tu et al., 2024].

4 Pareto front surface statistics

Real-world problems are typically noisy and subject to many sources of uncertainty. In order to
quantify this uncertainty, decision makers often appeal to ideas from Probability and Statistics.
In this section, we will generalise these existing ideas to function over the space of Pareto front
surfaces Y∗η. Precisely, we will study the concept of a random Pareto front surface and showcase
how our polar parameterisation result (Theorem 3.1) can be easily used in order to define many
statistical quantities of interest. Intuitively, we will treat the Pareto front surface as an infinite-
dimensional random variable (10) and define the statistics according to its corresponding finite-
dimensional distributions. Before we introduce these ideas in more detail, we will first describe
the general set up and assumptions that we will be using throughout this section.

Formulation. Consider a standard probability space (Ω,F ,P), where Ω denotes the sample
space, F denotes a σ-algebra and P denotes a probability measure. In this section, we will
be interested in studying the Pareto front surface associated with some vector-valued random
function f : X × Ω → RM , which we have indexed with the inputs x ∈ X. For a fixed and
known reference vector η ∈ RM , we denote the corresponding Pareto front surface by

Y ∗η,f (ω) := Y int
η [{f(x,ω)}x∈X] =

{
η + sup

x∈X
sη,λ(f(x,ω))λ ∈ RM : λ ∈ SM−1+

}
, (10)

for ω ∈ Ω, where `η,λ[Y ∗η,f (ω)] = supx∈X sη,λ(f(x,ω)) ≥ 0 are the corresponding the projected

lengths along the positive directions λ ∈ SM−1+ .

Projected lengths. By exploiting the explicit form of the random Pareto front surface
in (10), we see that the only dependence on ω ∈ Ω arises solely in the projected lengths
`η,λ[Y ∗η,f (ω)] ≥ 0 for λ ∈ SM−1+ . Therefore all of the distributional information about the
Pareto front surface is completely characterised by its projected lengths

Lη(ω) := {`η,λ[Y ∗η,f (ω)] ≥ 0 : λ ∈ SM−1+ }. (11)
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Figure 7: An illustration of the estimated Pareto front surface statistics for a finite set of samples in M = 2
dimensions.

Note that if we used a nonlinear representation for the Pareto front surface instead (Remark 3.3),
then it is unlikely that such a simplification would have been possible.

Assumptions. To avoid dealing with some unnecessary complications, we will make the
following two simplifying assumptions (Assumption 4.1 and Assumption 4.2). Together, both of
these assumptions ensures that the polar parameterisation of the Pareto front surface, described
on the right of (10), holds almost surely. Moreover, Assumption 4.2 also ensures that the
projected length `η,λ[Y ∗η,f ] ≥ 0, along any positive direction λ ∈ SM−1+ , is bounded almost
surely. Consequently, this means that the moments and quantiles of the projected lengths exist
and are finite.

Assumption 4.1 (Positive lengths) The Pareto front surface Y ∗η,f is non-empty5 almost
surely.

Assumption 4.2 (Bounded lengths) The random function f is bounded almost surely.

Remark 4.1 (Finite input space) All of the results in this section hold for any input space
X. Nevertheless, for computational convenience, most of the examples in this section focus
on the practical setting where the input space is finite and |X| < ∞. This implies that the
projected lengths can be computed exactly because the supremum reduces down to a maximum:
`η,λ[Y ∗η,f (ω)] = maxx∈X sη,λ(f(x,ω)) for λ ∈ SM−1+ .

Remark 4.2 (Sensitivity to transformations) Most of the probabilistic concepts which we
describe in this section depend on the choice of reference vector (Remark 2.1) and any nonlinear
transformations of the objective space (Remark 3.3). For example, in Section 4.1, we define
the expected Pareto front surface in the original objective space: Eω[Y ∗η,f (ω)] ∈ Y∗η. But we
could have quite easily defined the same expectation in the transformed space, before inverting it
back to the original objective space: τ−1(Eω[Y ∗τ(η),τ◦f (ω)]), where τ : RM → RM is an invertible
monotonically increasing function. Clearly these two quantities are not necessarily equal and
therefore some care has to be taken when using one or the other. Note that this issue also arises
for the scalar-valued setting as well.

5Note that we could easily lift this non-empty assumption by simply treating every empty Pareto front
surface as being equivalent to the degenerate singleton set {η} ∈ Lη.

13



4.1 Expectation

We define the expected value of the Pareto front surface distribution (10) by the equation

Eω[Y ∗η,f (ω)] := {η + Eω[`η,λ[Y ∗η,f (ω)]]λ ∈ RM : λ ∈ SM−1+ }, (12)

where Eω[·] denotes the expectation operator under P. It can be easily shown that under
the given assumptions, the expectation above satisfies the conditions in Proposition 3.1 and
therefore is a valid Pareto front surface. For completeness, we state this result in Proposition 4.1
and prove it in Appendix A.5.

Proposition 4.1 Under Assumptions 4.1 and 4.2, the expectation of a Pareto front surface
distribution (12) is a Pareto front surface Eω[Y ∗η,f (ω)] ∈ Y∗η.

Sample-based estimate. In general, the expected projected lengths is an intractable quan-
tity that cannot be computed exactly. Nevertheless, if we can sample a collection of random
Pareto front surfaces, then we can easily estimate this quantity using a sample average

µ̂η,λ,N =
1

N

N∑
n=1

`η,λ[Y ∗η,f (ωn)] (13)

for λ ∈ SM−1+ , where {ωn}Nn=1 ⊆ Ω denotes i.i.d. samples of the random parameter. Conse-
quently, we can then define the sample mean Pareto front surface µ̂η,N ∈ Y∗η using the projected
length estimates given by (13). The fact that this estimated front is also a valid Pareto front
surface is a direct consequence of Proposition 4.1. We illustrate an example of the estimated
mean Pareto front surface in the left plot of Figure 7.

Example 4.1 (Bayesian bootstrap) To quantify some uncertainty about the mean estimate,
we can appeal to the use many traditional techniques from scalar-valued statistics. For example,
we can construct a Bayesian bootstrap [Rubin, 1981] of the estimated means

µ̂bootstrap
η,λ,N (w) =

N∑
n=1

w(n)`η,λ[Y ∗η,f (ωn)],

where w = (w(1), . . . , w(N)) ∼ Uniform(∆M−1) denotes a weight vector sampled from a uniform
distribution over the probability simplex ∆M−1 := {w ∈ RM

≥0 : ||w||L1 = 1}. We demonstrate
an example of these bootstrap estimates in the left plot of Figure 7. Note that a similar type of
bootstrap estimate can also be computed for the other Pareto front surface statistics which we
will introduce in the upcoming sections.

4.2 Covariance

We define the covariance of the Pareto front surface distribution (10) as the corresponding
collection of covariance matrices with

Covω[Y ∗η,f (ω), Y ∗η,f (ω)]λi,λj
:= λiλ

T
j Covω[`η,λi

[Y ∗η,f (ω)], `η,λj
[Y ∗η,f (ω)]] ∈ RM×M (14)

for any two positive unit vectors λi,λj ∈ SM−1+ , where Covω[·, ·] denotes the covariance operator
under P.
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Sample-based estimate. In general, the covariance of the projected lengths is an intractable
quantity that cannot be computed exactly. Nevertheless, if we can sample a collection of random
Pareto front surfaces, then we can easily estimate these terms by using the standard sample-
based estimate

σ̂2
η,λi,λi,N

=
1

N − 1

N∑
n=1

(`η,λi
[Y ∗η,f (ωn)]− µ̂η,λi,N)(`η,λj

[Y ∗η,f (ωn)]− µ̂η,λj ,N)

for any two positive unit vectors λi,λj ∈ SM−1+ , where {ωn}Nn=1 ⊆ Ω denotes i.i.d. samples of
the random parameter with N > 1.

Marginal deviation surfaces. The marginal variances can be used in order to define an
uncertainty region around the mean. That is, we can define the upper deviation surface Zη,β
and lower deviation surface Zη,−β for some β ≥ 0 by

Zη,β := {η + (µη,λ + βση,λ,λ)+λ ∈ RM : λ ∈ SM−1+ } ∈ Lη

where ση,λ,λ := (σ2
η,λ,λ)1/2 denotes the marginal standard deviation in the direction λ ∈ SM−1+

and (x)+ := max(x, 0), for x ∈ R, denotes the truncation function which is used to ensure that
the lengths are non-negative. Note that these polar surfaces are not necessarily Pareto front
surfaces because they do not necessarily satisfy the maximum ratio condition in Proposition 3.1.
We present an illustration of these deviation surfaces in the middle plot of Figure 7 for a simple
two-dimensional problem.

4.3 Quantiles

We also define the quantiles of the Pareto front surface distribution (10) as the collection of
marginal quantiles

Qω[Y ∗η,f (ω), α] := {η +Qω[`η,λ[Y ∗η,f (ω)], α]λ ∈ RM : λ ∈ SM−1+ }, (15)

where Qω[·, α] denotes the the α-level quantile operator under P for any α ∈ (0, 1). It can be
easily shown that under the given assumptions, the quantiles above satisfies the conditions in
Proposition 3.1 and therefore is a valid Pareto front surface. For completeness, we state this
result in Proposition 4.2 and prove it in Appendix A.6.

Proposition 4.2 Under Assumptions 4.1 and 4.2, for any α ∈ (0, 1), the α-quantile of a
Pareto front surface distribution (15) is a Pareto front surface Qω[Y ∗η,f (ω), α] ∈ Y∗η.

Interpretation. Note that the α-level quantile (15) does not imply that 100α% of the possible
Pareto front surfaces are weakly dominated by this quantile Pareto front surface. Instead, this
definition of the quantile can be interpreted as a surface which divides the truncated objective
space D��[{η}] into two regions. One region is the space dominated by the α-level quantile,
which contains at least α-probability. Whilst the other region, its complement, contains at most
(1 − α)-probability. This interpretation follows immediately from the alternative formulation
of the α-quantiles, described later in (20), which are based on the concept of domination
probabilities (Section 4.4).

Sample-based estimates. In general, the quantile of the projected lengths is an intractable
quantity that cannot be computed exactly. Nevertheless, if we can sample a collection of
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random Pareto front surfaces, then we can easily estimate these quantiles by using an empirical
estimate

q̂η,λ,α,N := Qω∼Uniform({ωn}Nn=1)
[`η,λ[Y ∗η,f (ω)], α] (16)

for λ ∈ SM−1+ , where {ωn}Nn=1 ⊆ Ω denotes i.i.d. samples of the random parameter. Conse-
quently, we can then define the empirical quantile Pareto front surface q̂η,α,N ∈ Y∗η using the
projected lengths estimates given by (16). By Proposition 4.2, this empirical Pareto front sur-
face is indeed a valid Pareto front surface. We illustrate an example of this empirical quantile
front in the right plot of Figure 7.

4.4 Probability of domination

The probability that a set of vectors is Pareto optimal is given by the probability of domination.
This probability can also be interpreted as a generalisation of the survival function for Pareto
front surface distributions. By Lemma 3.1, we can write the probability of domination in term
of the projected lengths

P[Y ⊆ D�,η[Y ∗η,f ]] = P[∧y∈Y (sη,λ∗η(y)(y) ≤ `η,λ∗η(y)[Y
∗
η,f ])]

= P
[

inf
y∈Y

`η,λ∗η(y)[Y
∗
η,f ]

||y − η||L2

≥ 1

]
,

(17)

for any set of vectors Y ⊆ D��[{η}], where ∧ denotes the logical and operation. In practice,
this probability is an intractable quantity. Nevertheless, if we can sample a collection of random
Pareto front surfaces, then we can easily estimate it by using a simple Monte Carlo average.
In the left plot of Figure 8, we visualise the contours associated with the estimated marginal
domination probabilities for the Pareto front surface distribution described in Figure 7.

4.5 Probability of deviation

In some cases, we might be interested in computing the probability that a set of vectors lies
between two potentially random Pareto front surfaces. We refer to this quantity as the proba-
bility of deviation. By using Lemma 3.1, we can write the probability of deviation in term of
the projected lengths

P[Y ⊆ (D�,η[A∗]4D�,η[B∗]) \ Y int
η [A∗ ∪B∗]]

= P
[
∧y∈Y

(
min

Y ∗∈{A∗,B∗}
`η,λ∗η(y)[Y

∗] < sη,λ∗η(y)(y) < max
Y ∗∈{A∗,B∗}

`η,λ∗η(y)[Y
∗]
)]

= P
[
sup
y∈Y

(
`η,λ∗η(y)[A

∗]

||y − η||L2

− 1

)(
`η,λ∗η(y)[B

∗]

||y − η||L2

− 1

)
< 0

]
,

(18)

for any random Pareto front surfaces A∗(ω), B∗(ω) ∈ Y∗η and any set vectors Y ⊆ D��[{η}].
As with the domination probabilities in (17), this quantity can be easily estimated using a
Monte Carlo average. In Figure 8, we give an illustration of the estimated marginal deviation
probabilities when A∗(ω) = Y ∗η,f (ω) is a random Pareto front surface and B∗(ω) is a candidate
for the expectation.

4.6 Vorob’ev statistics

Random set theory [Molchanov, 2005] extends standard concepts from Probability and Statistics
to work over the space of closed sets. Some key ideas from this field have been used in earlier
work in order to define some Pareto front surface statistics [Grunert da Fonseca and Fonseca,
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2010, Binois et al., 2015]. These works have focussed on defining probabilistic concepts over the
space of domination regions D� := {D�[A] ⊆ RM : A ⊆ RM}. In the following, we will review
the core ideas within these works and show how they relate to our framework. To increase the
generality of our discussion, we will consider working in the more general space of truncated
domination regions D�,η := {D�,η[A] ⊆ RM : A ⊆ RM}.

Coverage function. In random set theory, one often relies on the concept of a coverage
function, which gives us the probability that an element lies within a random closed set. When
working over the space of truncated domination regions D�,η, this coverage function is simply
given by the probability of domination (17): P[y ∈ D�,η[Y ∗η,f ]] for any vector y ∈ RM . Equipped
with this coverage function, we can now define many different types of probabilistic concepts
by leveraging ideas from random set theory. Notably, Grunert da Fonseca and Fonseca [2010]
and Binois et al. [2015] have primarily focussed on extending the Vorob’ev concepts of random
set theory [Molchanov, 2005, Section 2.2], which we now describe below.

Vorob’ev quantiles. The Vorob’ev α-quantile is a possible generalisation of the quantile
function which is defined using the coverage function. Mathematically, the Vorob’ev α-quantile
is defined as the α-level excursion set associated with the coverage function

QVorob’ev
ω [Y ∗η,f (ω), α] := {y ∈ RM : P[y ∈ D�,η[Y ∗η,f ]] ≥ α} (19)

for α ∈ (0, 1). By Lemma 3.1, we see that the Vorob’ev α-quantile (19) is equivalent to the
truncated domination region of the (1− α)-quantile front in (15), that is

QVorob’ev
ω [Y ∗η,f (ω), α] = D�,η[Qω[Y ∗η,f (ω), 1− α]]. (20)

In other words, the α-level quantile in (15) is equal to the Pareto front surface or the upper
isoline of the (1 − α)-level Vorob’ev quantile. Note that in the original work by Grunert da
Fonseca and Fonseca [2010], they worked in the space of domination regions D� and therefore
their result does not depend on the reference vector. Crudely speaking, we can recover this
special case by letting the reference vector tend to negative infinity: η = (ε, . . . , ε) ∈ RM with
ε→ −∞.

Vorob’ev mean. In addition to proposing the Vorob’ev α-quantile, Grunert da Fonseca and
Fonseca [2010] proposed using the median quantile (α = 0.5) as a potential candidate for
the mean Pareto front surface. In contrast Binois et al. [2015] proposed using the Vorob’ev
expectation as a candidate for the mean. The Vorob’ev expectation is defined as the α∗-level
Vorob’ev quantile whose hypervolume is the closest to the expected hypervolume of the random
Pareto front surface. More precisely,

EVorob’ev
ω [Y ∗η,f (ω)] := QVorob’ev

ω [Y ∗η,f (ω), α∗],

where α∗ satisfies the inequality

ν[QVorob’ev
ω [Y ∗η,f (ω), α]] ≤ Vη,f ≤ ν[QVorob’ev

ω [Y ∗η,f (ω), α∗]], (21)

for any α > α∗, where Vη,f := Eω[ν[D�,η[Y ∗η,f (ω)]]] = Eω[UHV
η [Y ∗η,f (ω)]] is the expected hyper-

volume of the Pareto front surface distribution. Note that the Vorob’ev mean is a Vorob’ev
quantile and therefore it is a truncated domination region and not a Pareto front surface. As a
result, when we later refer to the Vorob’ev mean front, we are actually referring to the Pareto
front surface of the Vorob’ev mean, that is the (1− α∗)-quantile front.
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Figure 8: An illustration of the Vorob’ev statistics on an M = 2 dimensional example. On the left plot, we
illustrate the contours of the estimated marginal probability of domination (17). In the middle and right plot,
we illustrate the estimated Vorob’ev mean front and expected front, respectively. For both of these fronts, we
include the contours of the estimated marginal probability of deviation (18) between the random Pareto front
surface and the mean estimate.

Vorob’ev deviation. Analogous to how the traditional scalar-valued expectation minimises
the variance, the Vorob’ev mean is known to minimise a quantity known as the Vorob’ev devi-
ation. Binois et al. [2015] defined the Vorob’ev deviation of a Pareto front surface distribution
as the expected hypervolume of the symmetric difference between the Pareto front surface and
the considered set. Equivalently, the quantity can be written as the expected hypervolume
distance (9) between these two sets, that is

Vorob’evDeviationη,f [A] := Eω[ν[A4D�,η[Y ∗η,f (ω)]]] (22)

for any measurable set A ∈M(D��[{η}]) lying in the truncated space. As shown by Molchanov
[2005, Section 2.2], the Vorob’ev mean is a minimiser to the Vorob’ev deviation over the space
of measurable sets A ∈M(D��[{η}]) subject to the condition that ν[A] = Vη,f . That is,

EVorob’ev
ω [Y ∗η,f (ω)] ∈ arg min

A∈M(D��[{η}]):ν[A]=Vη,f

Vorob’evDeviationη,f [A].

Validity of the Pareto front surfaces. As a direct consequence of Proposition 4.2, the
positive isolines of the Vorob’ev based Pareto front surfaces are all valid Pareto front surfaces
because they are just instances of the quantile front (15). This result was not proven and just
taken for granted in the original works, but we have shown that it follows quite naturally from
our polar parameterisation and Proposition 4.2.

Sample-based estimates. The Vorob’ev statistics above can be estimated using the em-
pirical quantiles as we described in Section 4.3. For the Vorob’ev mean front, we have to
additionally compute the parameter α∗ which satisfies the hypervolume condition (21). To
approximately solve this problem, Binois et al. [2015] proposed using an iterative bisection
scheme. Notably, this procedure can be very expensive because it requires evaluating the hy-
pervolume of the quantiles several times. On the other hand, our definition of the expectation
is much cheaper and simpler to estimate. In Figure 8, we present a visual comparison between
the estimated Vorob’ev mean front and our sample mean front for a simple two-dimensional
example. In this example, there does not appear to be any meaningful difference between these
two Pareto front surfaces.

4.7 A decision-theoretic construction

Many standard statistics of real-valued random variables can be constructed under the decision-
theoretic perspective in which we optimise a certain scoring rule [Gneiting, 2011]. Our polar
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parameterisation of the Pareto front surface gives us an easy way to generalise this decision-
theoretic construction to the space of Pareto front surface distributions. In particular, we can
recover many of the Pareto front surface statistics introduced in the previous sections as being
equal to a functional Fω, which minimises some expected frontier loss (8),

Fω[Y ∗η,f (ω)] ∈ arg min
A∈Lη

Eω[Dη,S[A, Y ∗η,f (ω)]], (23)

where S : R × R → R≥0 denotes some scoring function. In Table 1, we present the explicit
choices of S which leads to the different Pareto front surface statistics that we introduced earlier.
Note that all of the results in this table follow immediately from the standard construction of
these functionals in the univariate setting. To see this, we first note that we can rewrite the
expected frontier loss as an expectation over the space of positive unit vectors by interchanging
the order of integration, that is

Eω[Dη,S[A, Y ∗η,f (ω)]] = Eλ∼Uniform(SM−1
+ )[Eω[S(`η,λ[A], `η,λ[Y ∗η,f (ω)])]].

As there are no inter-dependencies between the different unit vectors in this expression, we see
that the optimisation problem in (23) can equivalently be solved by independently solving for
the projected lengths along each positive direction, namely

`η,λ[Fω[Y ∗η,f (ω)]] ∈ arg min
a≥0

Eω[S(a, `η,λ[Y ∗η,f (ω)])] (24)

for λ ∈ SM−1+ . Evidently, once we have solved this collection of optimisation problems, we can
easily reconstruct the polar surface Fω[Y ∗η,f (ω)] ∈ Lη by using the linear mapping described
earlier in (4). In essence, the scalar-valued optimisation problems in (24) are equivalent to
the standard decision-theoretic optimisation problems which appear in the univariate setting.
Consequently, this means that we can just take advantage of existing results from univariate
statistics in order to define Pareto front surface statistics. For instance, in the previous sections,
we set the scoring function to be the squared error loss and the pinball loss in order to recover
the expected value [Savage, 1971] and the α-quantiles [Raiffa and Schlaifer, 1968, Ferguson,
1967], respectively. Naturally, we can also use this strategy to generalise any other standard
univariate statistic of interest such as the mode, α-expectiles and so on.

Pareto front surface statistic Fω[·] Scoring function: S(x, y)

Mean front Eω[·] (x− y)2

Quantile front Qω[·, α] (1[x ≤ y]− α)(x− y)
Vorob’ev quantile front Y int

η [QVorob’ev
ω [·, α]] (1[x ≤ y]− (1− α))(x− y)

Vorob’ev mean front Y int
η [EVorob’ev

ω [·]] (1[x ≤ y]− (1− α∗))(x− y)

Table 1: A list of Pareto front surface statistics and their scoring functions (23).

5 Applications

The concepts and results which we describe in this work are general and can be applied in any
scenario where we want to infer or quantify properties about a random Pareto front surface. In
this section, we identify a few concrete applications of these ideas which might be of interest
for practitioners. Firstly, we begin in Section 5.1 by looking at the problem of Pareto front
visualisation, which is a core component in many modern decision making workflows. We
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showcase how it is possible to adapt many existing visualisation strategies from the deterministic
setting into the stochastic setting by appealing to our polar parameterisation result. Secondly,
in Section 5.2, we illustrate how all of these Pareto front surface statistics and visualisation
ideas can be used within a standard Bayesian experimental design setting. Subsequently, in
Section 5.3, we apply our framework to extend multivariate extreme value theory to the Pareto
partially ordered setting. Lastly, in Section 5.4, we present a Pareto front analysis of a real-world
time series data set concerning the air pollution levels in North Kensington, London.

5.1 Visualisation

Visualisation is a key element in many modern multi-objective decision making pipelines. We
can easily visualise the Pareto front surface for low-dimensional problems (M ≤ 3) by using a
simple two-dimensional line plot or a three-dimensional surface plot. For higher dimensional
problems (M > 3), these simple approaches no longer work and we have to become more creative
when it comes to visualising the Pareto front—see the work by Tušar and Filipič [2015] for a
survey on these visualisation strategies. Notably, this problem of visualising the Pareto front
surface is exacerbated when we also want to include uncertainty information about the Pareto
front surface distribution as well. The majority of existing work in Pareto front visualisation
has largely focussed on the deterministic setting. To the best of our knowledge, no work has
focussed on the practically important problem of visualising a random Pareto front surface. In
this section, we address this gap in the literature by proposing a general visualisation approach
which works even in the stochastic setting. In particular, we develop a projection mapping
strategy which gives us a way to slice a high-dimensional Pareto front surface into a collection
of lower-dimensional Pareto front surfaces. One can then build a picture of the overall Pareto
front surface by navigating these lower-dimensional slices. To illustrate the usefulness of our
new method, we built two simple dashboard applications which can be used to visualise and
navigate the space of one- or two-dimensional Pareto front surface slices, respectively—see
Figures 10 and 11 for a snapshot of these applications.

5.1.1 Projected Pareto front surfaces

The polar parameterisation result tells us that any M -dimensional Pareto front is isomorphic
to the set of positive unit vectors SM−1+ . Therefore, in theory, any strategy that can be used to
visualise the set of positive unit vectors can also be used to visualise a Pareto front surface. In
this section, we propose a novel idea to visualise any Pareto front surface by appealing to the
following partitioning of the space of positive unit vectors:

SM−1+ =
⋃

v∈VM−P
+

{λ ∈ SM−1+ : P[M ]\I(λ) = v}

where I = {i1, . . . , iP} ⊂ [M ] := {1, . . . ,M} is a non-empty set of |I| = P ordered indices with
i1 < · · · < iP ; PI : RM → RP is the projection mapping with PI(a) = (a(i1), . . . , a(iP )) ∈ RP

for any vector a ∈ RM ; and VM−P+ := {z ∈ RM−P
>0 : ||z||L2 < 1} is the set of vectors lying

within the positive orthant of the (M −P )-dimensional sphere. Intuitively, this partition gives
us a way to slice up the set of positive unit vectors by intersecting it with the hyperplanes
{y ∈ RM : P[M ]\I(y) = v} for v ∈ VM−P+ . By construction, if we project each slice onto the
remaining indices, then we obtain a lower-dimensional Pareto front surface. We summarise this
result in Lemma 5.1 and prove it in Appendix A.7.

Lemma 5.1 (Projected slice) For any non-empty set of P > 0 indices I ⊂ [M ] and vector
v ∈ VM−P+ , the polar surface PI,v[SM−1+ ] := {PI(λ) ∈ RP : λ ∈ SM−1+,v } ∈ L0P

is a P -

dimensional Pareto front surface with the zero reference vector, that is PI,v[SM−1+ ] ∈ Y∗0P
.

20



Figure 9: An illustration of the three different ways that we can generate two-dimensional slices of a three-
dimensional Pareto front surface.

Notably, this result gives us a way to visualise the set of positive unit vectors SM−1+ through
its lower-dimensional projections. In the following, we will extend this visualisation strategy to
work for any arbitrary Pareto front surface A∗ ∈ Y∗η.

Projection mapping. We will now formalise the concept of the projected Pareto front sur-
face, which is the natural extension to the ideas described above. To accomplish this, we define
the reconstruction function φI : VM−P+ × SP−1+ → SM−1+ , to be the function that creates a
positive unit vector whose projected values are

PI(φI(v,λ)) =
√

1− ||v||2L2λ and P[M ]\I(φI(v,λ)) = v,

for any non-empty set of P ordered indices I = {i1, . . . , iP} ⊂ [M ], any vector v ∈ VM−P+ and
any positive unit vector λ ∈ SP−1+ . Explicitly, the reconstruction function takes the form

φ
(m)
I (v,λ) :=

{√
1− ||v||2L2λ

(p), if m ∈ I and m = ip,

v(p), if m ∈ J and m = jp,
(25)

for m = 1, . . . ,M , where J = [M ]\ I = {j1, . . . , jM−P} denotes the complement of I containing
M−P ordered indices. Using this function, we define the projection mapping PI,v : Lη → LPI(η)

to satisfy the equation

PI,v[A] := {PI(η) + `η,φI(v,λ)[A]
√

1− ||v||2L2λ ∈ RP : λ ∈ SP−1+ }, (26)

for any polar surface A ∈ Lη. In Proposition 5.1, immediately below, we show that the
projection of any Pareto front surface is indeed a valid Pareto front surface.

Proposition 5.1 (Projected Pareto front surface) For any Pareto front surface A∗ ∈ Y∗η,

any non-empty set of P > 0 indices I ⊂ [M ], any vector v ∈ VM−P+ , the corresponding projected
Pareto front surface (26) is a P -dimensional Pareto front surface with the reference vector
PI(η) ∈ RP , that is PI,v[A∗] ∈ Y∗PI(η)

.

This result follows similarly in spirit to Lemma 5.1 and the proof is presented in Appendix A.8.
In addition, we have also included a concrete example in Figure 9, where we demonstrate how
a three-dimensional Pareto front surface can be partitioned into a collection of two-dimensional
slices.

21



Remark 5.1 (Non-constant fixed vector) The projected Pareto front surface PI,v[A∗] ∈
Y∗PI(η)

only considers the values indexed by the set I. It ignores the values at the other com-

ponents [M ] \ I. The values at these components were a constant for the spherical Pareto
front surface SM−1+ , but there are not necessarily a constant for a general Pareto front surface
A∗ ∈ Y∗η. Specifically, the projected vector at these indices are given by

P[M ]\I(η) + `η,φI(v,λ)[A
∗]v ∈ RM−P

for any λ ∈ SP−1+ . Note that this vector is constant if and only if the projected lengths
`η,φI(v,λ)[A

∗] are constant for all λ ∈ SP−1+ . If this is not the case, then one must also be
aware of this feature when examining the slices.

5.1.2 Dashboard applications

Proposition 5.1 gives us a way to visualise an M -dimensional Pareto front surface distribution
by navigating its lower-dimensional projections. To illustrate the utility and simplicity of
this new concept, we have built two interactive dashboard applications which can be used
to navigate the space of one- or two-dimensional slices, respectively. We present a snapshot
of these applications in Figure 10 and Figure 11, respectively, for a four-dimensional Pareto
front surface distribution based on the reformulated bulk carrier design problem [Tanabe and
Ishibuchi, 2020]. Below we elaborate on the construction of these applications in some more
detail.

One-dimensional projection. To navigate the space of one-dimensional slices, we propose
introducing M different sliders that can be used to adjust the positive unit vectors λ ∈ SM−1+ .
Conceptually, each slider is associated with a weight lying in the open unit interval: w(m) ∈
(0, 1) for the objectives m = 1, . . . ,M . The positive unit vector can then be constructed by
normalising the weight vector appropriately: λ = w/||w||L2 ∈ SM−1+ .

Ideally, we want the weight vector w ∈ (0, 1)M to denote the relative importance of each
objective. For this reason, we apply a normalisation transformation τ : RM → RM to the
objective vectors: τ(y) = (y − l)/(u − l) for any vector y ∈ RM , where l,u ∈ RM denote the
estimates for the lower and upper bound of the objective vectors, respectively. In addition,
we also use these bound estimates to set the reference vector6: η = l − 0.2(u − l) ∈ RM . As
described in Remark 3.3, to reconstruct the Pareto front surface, we just have to invert this
affine transformation, namely we set

y∗η,λ = τ−1(τ(η) + `τ(η),λ[τ(A∗)]λ) = η + `η,r[A
∗]r ∈ RM

for all λ ∈ SM−1+ , where A∗ ∈ Y∗η is the Pareto front surface of interest and r ∈ SM−1+ denotes

the updated positive unit vector with r(m) ∝ (u(m)−l(m))λ(m) for objectives m = 1, . . . ,M .

To visualise the one-dimensional projections of the Pareto front surface, we propose using a
parallel coordinates plot, which is a common visualisation tool for high-dimensional Pareto
fronts [Tušar and Filipič, 2015]. The novelty of our work is that we can also view uncertainty
information along each projection as well. For example, in our application we computed and
visualised the empirical quantiles and the sample mean obtained using a finite set of samples
{A∗(ωn) ∈ Y∗η}Nn=1. Notably, this overall application is very lightweight to run because all of
these statistics can computed and updated very quickly and cheaply on the fly.

6Following Remark 2.1, we set the reference vector to be slightly worse than the estimated nadir. Naturally,
we could also allow the reference vector to be set dynamically by adding some more sliders into the application.
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Figure 10: An illustration of the dashboard application that we made in order to navigate the space of one-
dimensional projections of a Pareto front surface.

Figure 11: An illustration of the dashboard application that we made in order to navigate the space of two-
dimensional projections of a Pareto front surface.

Two-dimensional projection. Our two-dimensional dashboard application works in very
much the same way as our one-dimensional application described above. The only key difference
now is the introduction of two additional drop-down lists, which are used to determine the
indices of the set I = {i1, i2}. The corresponding fixed vector v ∈ VM−2+ is then determined by
the remaining (normalised) weight sliders.

To visualise the two-dimensional slices of the Pareto front surface distribution, we considered
using a regular two-dimensional line plot. In our application, we included visuals on the em-
pirical quantiles and the sample mean of the projected two-dimensional Pareto front surface.
Naturally, other useful information could be included as well. For example, to address Re-
mark 5.1, it might be beneficial to also include a parallel coordinates plot of the fixed vector as
well—similar to the one used in Figure 10, but only for the fixed components.

Higher dimensional projections. The one-dimensional slices gave us information about the
marginal performance for each objective. Whilst the two-dimensional slices gave us information
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about the correlation between any two objectives. Similarly, in order to learn more about the
P -th order interactions, we need to be able to visualise the P -dimensional slices of the Pareto
front surface. For example, one might consider adapting one of the methods surveyed by Tušar
and Filipič [2015] in order to accomplish this.

5.2 Uncertainty quantification

The statistical concepts described in Section 4 gives us a tangible and useful way to analyse
and quantify the uncertainty surrounding a distribution of random Pareto front surfaces. In
this section, we highlight some potential use cases for this machinery in a Bayesian experimen-
tal design setting. Formally, we consider the problem of identifying the Pareto front surface
associated with some bounded vector-valued black-box objective function g : X → RM . We
suppose that we have executed an experimental design procedure and have observed a collec-
tion of potentially noisy data points DT = {(x1,y1), . . . , (xT ,yT )} ⊂ X× RM . We then adopt
a standard Bayesian set-up in which we assume a probabilistic prior on the objective function
p(g) and a likelihood on the observations p(DT |g). These variables can then be used to compute
a posterior distribution over the objective function, p(g|DT ) ∝ p(g)p(DT |g), and consequently
over the Pareto front surface, Y ∗η,g := Y int

η [{g(x)}x∈X], as summarised in the following flow
diagram:

p(g), p(DT |g) −−−−−→
posterior

p(g|DT ) −−−−−−→
Pareto front

p(Y ∗η,g|DT ).

We can then appeal to our earlier work in Section 4 in order to study this resulting Pareto front
surface distribution. More precisely, we can associate the random function f : X × Ω → RM ,
described in Section 4, with the sampling distribution induced by the latest posterior model:
f(·,ω) ∼ p(g(·)|DT ), where ω ∈ Ω is distributed according to P. We can then analyse and eval-
uate the posterior Pareto front surface distribution p(Y ∗η,g|DT ) by studying the corresponding
polar parameterised random variable described in (10). To showcase how this overall routine
works in practice, we present an illustrative example in Section 5.2.1, where we visualise the
evolution of a Pareto front surface distribution during different runs of Bayesian optimisation.
Afterwards, in Section 5.2.2, we then demonstrate how this distributional information can be
used in conjunction with the visualisation techniques described in Section 5.1 in order to help
us make final decisions.

5.2.1 Bayesian optimisation

Bayesian optimisation is a popular strategy for black-box optimisation—see the book by Gar-
nett [2023] for a recent overview on this topic. Notably, this experimental design strategy takes
advantage of a probabilistic surrogate model in order to determine the best inputs to evalu-
ate. As described above, we can easily take advantage of this probabilistic model in order to
compute any Pareto front surface statistic of interest. Practically speaking, we envision that
these statistics might be valuable for an active decision maker who is interested in adapting the
Bayesian optimisation run for their own purposes. For instance, one might use these statistics
in conjunction with the visualisation ideas described in Section 5.1 in order to visualise and
better understand the evolution of the Pareto front surface distribution. Given this newfound
understanding, a keen decision maker might then actively refine and reprogram7 the acquisition
procedure in order to target a specific region of interest. Alternatively, earlier work by Binois
et al. [2015] suggested that it might also be possible to use some Pareto front surface statistics,
such as the Vorob’ev deviation (22), as a basis for a stopping criteria.

7For instance, in the expected hypervolume acquisition criterion [Emmerich et al., 2006], one might use this
visual information in order to update the reference vector η ∈ RM .
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Figure 12: An illustration of the change in the Pareto front surface distribution p(Y ∗
η,g|DT ) when we perform

Bayesian optimisation on the normalised GMM and DTLZ2 benchmarks. In the plots, we draw the estimated
mean front and highlight the region between the 5% and 95% estimated quantile fronts in blue.

In Figure 12, we illustrate an example of how the Pareto front surface distribution evolves over
time during one run of the Bayesian optimisation algorithm applied on the Gaussian mixture
model (GMM) [Daulton et al., 2022] and the DTLZ2 [Deb et al., 2002] benchmark problem.
For the probabilistic model, we adopted a standard Gaussian process prior [Rasmussen and
Williams, 2006] on our objective function and an independent Gaussian observation likelihood
on the function observations. For the acquisition function, we used the expected hypervolume
improvement [Emmerich et al., 2006]. For illustrative convenience, we discretised the input
space in both of these benchmark problems to have |X| = 212 points. This latter simplification
is only to ensure that we can compute the Pareto front surface of the objective function and
the model samples exactly using our polar parameterisation.

There are a number of key observations that we see from the plots in Figure 12. Firstly, we see
that the Pareto front surface distribution does indeed slowly converge to the actual Pareto front
surface when we observe more data points. This is clearly a desirable property and is some-
thing that is expected on these benchmark problems. Secondly, we see that the model Pareto
front surface always dominates the sample Pareto front surface in these examples. This makes
intuitive sense because the sample front considers only a finite number of |YT | = T points. In
contrast, the model Pareto front surface considers the objective values over the entire input
space. Note however that this intuition only holds in our example because the observations
were not contaminated with any output noise. Otherwise, when there is observation noise in
our data, the sample Pareto front could easily dominate both the actual and model Pareto
front surface. For this reason, it is common for practitioners to rely on model-based estimates
of the Pareto front surface when the data is noisy. Thirdly, we see that the uncertainty of the
Pareto front surface does not necessarily decrease in a monotonic fashion as we add more points.
This feature naturally arises in our example because we did not fix the model hyperparame-
ters in our Gaussian process prior. Instead, we followed standard practice and updated these
hyperparameters in an online manner by always maximising the latest log marginal likelihood
[Balandat et al., 2020]. As a result of this updating step, the overall uncertainty in the Pareto
front surface occasionally increased when we incorporated more points—for instance we see this
feature when we transition from T = 20 to T = 30 in the GMM problem.
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5.2.2 Input decision

The Pareto front surface distribution gives us information on how the optimal set of objective
vectors are distributed. This valuable information can be used by the decision maker in order to
guide them in their downstream decision making. For instance, this information can help them
decide which feasible objective vectors y∗ ∈ RM are the most desirable. On a practical level,
this post-selection procedure is typically handled with the help of an interactive application
which allows the decision maker to visualise and navigate the Pareto front surface. Notably,
we envision that the ideas and tools that we introduced earlier in Section 5.1 could be used in
this interactive decision making procedure. Consequently, once the desirable vectors have been
elicited, the decision maker would often be interested in identifying the inputs x∗ ∈ X, which
would most likely lead to these desirable vectors. To solve this problem, we propose adopting
a decision-theoretic approach, where we select the best input as the one which minimise some
M -dimensional loss function L : RM ×RM → R. That is, we propose minimising the expected
empirical loss

x∗ ∈ arg min
x∈X

1

N

N∑
n=1

L(f(x,ωn),y∗),

where {ωn}Nn=1 ⊆ Ω denotes i.i.d. samples of the random parameter and y∗ ∈ RM denotes the
target vector of interest. Clearly there are many potential loss functions that we can choose in
practice. Motivated by the work so far, a natural candidate for the loss function would be a
frontier loss function (8):

L(y,y∗) = Dη,S[Y int
η [{y}],Y int

η [{y∗}]]

for any two vectors y,y∗ ∈ RM . A weakness of this loss function is that it can be very
expensive to estimate and optimise in practice because it requires computing an integral over
the space of positive unit vectors SM−1+ . Motivated by Lemma 3.1, we propose using a much
cheaper simplification where we consider only computing the score along the optimal direction
(3):

L(y,y∗) = S(sη,λ∗η(y∗)(y), sη,λ∗η(y∗)(y
∗)). (27)

Geometrically, this loss function scores any vector y ∈ RM by computing its projected length
along the reference line Lη,λ∗η(y∗) = {η+tλ∗η(y∗) : t ∈ R} and then comparing it with the desired
projected length. We illustrate the efficacy of this strategy for a two-dimensional example in
Figure 13 based on the four bar truss optimisation problem [Cheng and Li, 1999, Tanabe
and Ishibuchi, 2020]. We see clearly in this example that the random vectors f(x∗,ω) ∈ RM

associated with the best inputs x∗ ∈ X are indeed distributed close to the corresponding target
vectors y∗ ∈ RM .

Remark 5.2 (Scale sensitivity) Any M-dimensional loss function will naturally be sensitive
to the scales of the different objectives. When using the length-based loss functions (27), we
recommend normalising each objective by its range in order for each objective to have a similar
influence on the projected length as illustrated in Section 5.1.2. Evidently we can also take
advantage of this sensitivity in order to inflate the importance of some objectives over others.
That is, in order to up-weight the importance of an objective, we can increase its range and
similarly in order to down-weight the importance of an objective, we can decrease its range.

5.3 Extreme value theory

Extreme value theory is a well-established branch of statistics which studies the distribution of
extreme values—see for instance Embrechts et al. [1997], Coles [2001] or Beirlant et al. [2004] for
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Figure 13: An illustration of the best input attained by minimising the length-based loss function (27) with the
squared error scoring function S(x, y) = (x− y)2.

a background on this topic. In this section, we showcase how our polar parameterisation result
can be used in order to generalise many existing ideas in this topic to the multivariate setting,
where the maximum is defined using the Pareto partial ordering. To the best of our knowledge,
the majority of existing work in multivariate extreme value theory has largely focussed on
the marginal maximisation setting [Barnett, 1976], where the maximum operation on a set of
vectors is defined component-wise. No work has focussed on the setting where the maximum
is defined using the Pareto partial ordering. We attribute this lack of interest based on the
fact that the Pareto maximum is very challenging to work with in practice. Despite this, there
are clear benefits for adopting the latter approach over the former. Most notably, the Pareto
approach is much more flexible because it can also accommodate for the scenario where the
various component-wise maximums do not all take place simultaneously.

The most notable results from extreme value theory are the Fisher–Tippett–Gnedenko theo-
rem [Fisher and Tippett, 1928, Gnedenko, 1943] and the Balkema–de Haan–Pickands theorem
[Balkema and de Haan, 1974, Pickands, 1975]. The former result is concerned with the asymp-
totic distribution of the maximum order statistic associated with a collection of independent
and identically distributed univariate random variables. In words, it states that the distribution
of the maximum, upon proper normalisation, can only converge in distribution to either a Gum-
bel, Fréchet or Weibull distribution. In contrast, the latter result is concerned with the limiting
distribution of the corresponding conditional excess distribution (Definition A.2). Conceptually,
this result tells us that the distribution of the tail events, pass some threshold, can be closely
approximated by a generalised Pareto distribution. For reference purposes, we recall both of
these results in the Appendix—namely, Theorem A.1 and Theorem A.2, respectively.

Component-wise maximum. The existing work on multivariate extreme value theory has
largely focussed on the marginal maximisation setting where the maximum of a collection of
N independent and identically-distributed vectors Y1, . . . , YN ∈ RM are defined component-
wise. The traditional goal of interest is then to study the multivariate generalisation of the
maximum domain of attraction (MDA) for the resulting multivariate distribution function
F : RM → R,

F (x) = P[max({Y (1)
1 , . . . , Y

(1)
N }) ≤ x(1), . . . ,max({Y (M)

1 , . . . , Y
(M)
N }) ≤ x(M)]

for x ∈ RM—see Beirlant et al. [2004, Chapter 8] for an overview on this topic. The primary
benefit of using this component-wise definition is that we can immediately apply both Theo-
rem A.1 and Theorem A.2 in order to determine the asymptotic properties of the corresponding
marginal distributions. The remaining challenge is then to identify the corresponding depen-
dence structure between the components. This latter problem turns out to be a major hurdle
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Figure 14: An illustration of the Pareto front surface statistics associated with a collection of independent
Weibull distributions (Proposition 5.2). In the dotted lines, we plot the empirical estimates obtained using
N ∈ {4, 16, 64, 256} random samples, whereas in the shaded lines we plot the predicted mean and quantiles given
by the limiting distribution. As a reference, we also plot the contour of the corresponding bivariate probability
density function as well.

in multivariate extreme value theory because this dependency structure cannot necessarily be
described using a finitely parameterised model. Notably, the estimation and analysis of this
dependency structure is still an area of active research—see Beirlant et al. [2004, Chapter 8]
for an in-depth discussion.

Pareto maximum. One notable outcome of our work is that it manages to connect the defini-
tion of the Pareto maximum with the definition of the component-wise maximum. Specifically,
our polar parameterisation result tells us that the Pareto maximum can be completely char-
acterised by its projected lengths (11), which is defined as an infinite collection of scalarised
maximums. To put it more concretely, if we had a collection of identically-distributed vec-
tors Y1, . . . , YN ∈ RM , then the corresponding Pareto maximum is governed by the following
infinite-dimensional random variable

Lη = {max({sη,λ(Y1), . . . , sη,λ(YN)}) ≥ 0 : λ ∈ SM−1+ },

for any reference vector η ∈ RM . As a consequence of this observation, many of the results
that are known for the component-wise maximum can now be adapted to the Pareto maxi-
mum setting. For example, we can use Theorem A.1 to determine the possible asymptotic
distributions of the projected length process along each positive direction. Similarly, we can
use Theorem A.2 in order to approximate the distribution of the tails of the projected length
process conditional on the fact that it dominates some specified polar surface. That is, instead
of setting just a single threshold value of u ∈ R, we set the threshold to be a polar surface
defined by some set U = {uλ ≥ 0 : λ ∈ SM−1+ }.
As a proof of concept for these general ideas, we present a simple example in the proposition
below, where we study the asymptotic distribution of a Pareto front surface constructed using
a collection of independent Weibull distributed vectors—the proof of this result is presented in
Appendix A.9.1.

Proposition 5.2 (Weibull distributed vectors) Let the reference vector be set to zero η =
0M ∈ RM and the vectors Yn ∈ RM be distributed according to M > 0 independent Weibull
distributions,

Y (m)
n ∼Weibull(α, β(m)),

with the cumulative distribution function P[Y (m) ≤ x] = 1− exp(−(β(m)x)α), where α > 0 and
β(m) > 0 denotes the corresponding the shape and rate parameter for m = 1, . . . ,M , respectively.
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Figure 15: A comparison between the empirical and theoretical approximation of the conditional excess prob-
abilities (28) associated with the two-dimensional Pareto front surface distributions described in Figure 14. To
set the threshold polar surface, we used an upper quantile of the original Pareto front surface distribution.

Then, upon proper normalisation, the projected lengths of Y int
η [{Y1, . . . , YN}], along any positive

direction λ ∈ SM−1+ , converges to a standard Gumbel distribution:

lim
N→∞

P
[
`η,λ[Y int

η [{Y1, . . . , YN}]]− bη,λ,N
aη,λ,N

≤ x

]
= exp(− exp(−x))

where aη,λ,N = log(N)1/α−1/(αkλ), bη,λ,N = log(N)1/α/kλ and kλ = (
∑M

m=1(β
(m)λ(m))α)1/α.

To illustrate this convergence, we present some visual two-dimensional examples in Figure 14.
In these plots, we fixed8 the rate parameter β(m) > 0 and varied the choice of shape parameter
α > 0. On the whole, we see that the empirical and limiting distributions are already quite
similar even at small sample sizes such as N = 64. Conceptually, we see that varying the shape
parameter α > 0 amounts to changing from a concave Pareto front surface distribution when
α ∈ (0, 1) to a convex Pareto front surface distribution when α > 1.

Proposition 5.2 can also be used in conjunction with Theorem A.2. In words, this result tells
us that the tails of the corresponding projected length process are approximately distributed
according to an exponential distribution. To demonstrate this property, we present an illustra-
tive example in Figure 15, where we study the conditional excess probabilities associated with
the M = 2 dimensional Pareto front surface distributions described in Figure 14. That is, we
plot the probabilities

FU(z) := P[sη,λ∗η(z)(Y )− uλ∗η(z) ≤ sη,λ∗η(z)(z)|sη,λ∗η(z)(Y ) > uλ∗η(z)] (28)

for any z ∈ D��[{η}], where η = 0M is the reference vector, Y ∈ RM is the random vector
of interest and U = {uλ ≥ 0 : λ ∈ SM−1+ } is the projected length process which defines the
threshold polar surface. For convenience, in these examples, we set the threshold polar surface
to be one of upper quantiles. Nevertheless, we note that any polar surface, whose projected

8The rate parameter only controls the relative scaling of each objective and therefore it does not play a
major role in the assessment of the empirical result.
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Figure 16: An illustration of the daily maximum registered pollutants at the North Kensington monitoring
station (UKA00253) over the period of 2013 to 2023.
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Figure 17: An illustration of the change in the domination probabilities for the pairwise Pareto front surfaces
associated with the air pollution data (Figure 16).

length process is sufficiently long, can be used in practice. Overall we see that these empirical
estimates are indeed close to their theoretical approximate values.

5.4 Air pollution example

All of the ideas that we have presented so far can also accommodate for dynamic problems,
where the Pareto front surface distribution can vary in time. As an illustrative example, we
will now consider how these ideas can be used on a real-world time series data set. Precisely,
we study the air pollution data obtained at the North Kensington (UKA00253) air monitoring
station9 in west London.

Data cleaning. The air monitoring station at North Kensington measures many different
pollutants every day at different frequencies. We focus our attention on the measurements on
the three key pollutants in this area: Nitrogen dioxide (NO2), Ozone (O3) and Sulphur dioxide
(SO2). The Nitrogen dioxide and Ozone are measured at a rate of once every 60 minutes, whilst
the Sulphur dioxide is measured at a rate of once every 15 minutes. In our work, we use the
daily maximum of the measured observations as our statistic of interest. Sometimes there are
periods where some subset of the measurement devices are offline and therefore no readings
can be made. The daily maximums are then computed by using the partial observations that
were recorded. On the days where no observations were made at all, we omit the day entirely.
In Figure 16, we plot the resulting time series of these daily maximums over the period of 2013
to 2023.

Pareto front surface distributions. In this working example, we assume that the goal
of interest is to assess and better understand the change in the daily worst-case Pareto front

9We have curated this data from the UK-AIR website (https://uk-air.defra.gov.uk/), which is a publicly
accessible domain that is ran by the Department for Environment, Food & Rural Affairs (DEFRA) in the United
Kingdom.
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Figure 18: An illustration of the signed yearly changes in the domination probabilities for the pairwise Pareto
fronts described in Figure 17. The average yearly negative and positive changes are depicted in the legends. The
total average yearly change can be computed by summing the absolute values of these signed changes.

surface of pollution in the North Kensington area over the last decade. That is, we want to
see the change in the Pareto fronts of the daily maximum pollutants over the different years.
Practically speaking, we envision that this information might be useful for policy makers who
are interested in assessing the effectiveness of new pollution reducing initiatives in London such
as the Ultra Low Emission Zone (ULEZ) or the lowering of the local speed limits. In Figure 17,
we take advantage of some of our Pareto front machinery in order to compute and plot the
corresponding domination probabilities for the different pairwise Pareto front surfaces. We
see clearly that there is a general positive trend after 2020, where the Pareto front has been
progressing downwards. This indicates a general reduction in the daily maximum pollution.
Evidently this time period also aligns with many events such as: the Coronovirus pandemic,
the introduction of ULEZ and the lowering of local speed limits. Cumulatively, all of these
effects seem to have had a noticeably positive impact on reducing the daily maximum detected
Nitrogen dioxide and Sulphur dioxide in North Kensington. Nevertheless, the maximum amount
of Ozone is still at a comparative level to the earlier years. To further illustrate the reduction of
these domination probabilities more explicitly, we plot and calculate the corresponding average
yearly signed changes in Figure 18. That is, we compare every year’s Pareto front surface
distribution with the previous year and see where the relative positive and negative changes
occur. On the whole, we see that there is indeed a quantifiable reduction happening over the
later years as these new initiatives were being introduced.

6 Conclusion

In this work we presented a novel result which showed that any Pareto front surface can be
explicitly parameterised using polar coordinates. We exploited this polar parameterisation
result in order to define and compute statistics for random Pareto front surfaces. We then
demonstrated the usefulness of these new probabilistic ideas on some interesting applications
such as: visualisation, uncertainty quantification and extreme value theory. In the following
paragraphs, we highlight some interesting directions for future research.

Other interpolation schemes. Throughout this work, we have focussed our attention on
the interpolated Pareto front (Definition 2.4), which was defined using the weak Pareto partial
ordering. This type of interpolation is sensible because it is consistent with the weak Pareto
partial ordering on sets (Definition 3.2): Y int

η [A] � Y int
η [B] if A ⊆ B ⊆ D��[{η}]. In practice,

one might also consider using alternate interpolation (or approximation) schemes such as the
ones based on Delaunay triangulation [Hartikainen et al., 2012], sandwiching [Bokrantz and
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Forsgren, 2013] or hyperboxing [Dächert and Teichert, 2020, Eichfelder and Warnow, 2022].
Notably these other schemes might be beneficial when we are interested in approximating a
Pareto front of a continuous set Y ⊆ RM using a finite subset Ŷ ⊆ Y . In this setting, the
interpolated weak Pareto front of Ŷ would always give us a lower bound estimate of the actual
front. In contrast, a different interpolation scheme might be able to give us a more accurate
approximation of the target front, with respect to some frontier loss (Section 3.3). Naturally,
many of the results which we have shown here continues to hold even when we change the
interpolation scheme. The only notable difference is that the corresponding projected length
function `η,λ, which arises in the polar parameterisation (Theorem 3.1), might no longer be
written in terms of the length scalarisation function (2). Instead, the new projected length
function would likely depend on a different scalarisation function—one which accurately caters
for the interpolation scheme at hand. We leave the analysis of these other interpolation schemes
for future research.

Modelling the Pareto front surface. Our polar parameterisation result implies that any
Pareto front surface is completely characterised by its projected length function. Proposition 3.1
gives two necessary and sufficient conditions that a length function must satisfy in order for
it to induce a valid Pareto front surface. An interesting direction for future work would be
focussed on learning this projected length function directly from observational data. Note that
the first constraint (C1), positivity, can be easily handled by just considering the logarithm of
the length function instead. Whilst the second constraint (C2), the maximum ratio condition,
is much less trivial to worth with. Specifically, by taking the logarithm and rearranging the
terms, we see that this latter condition is very similar to a Lipschitz type constraint, which can
be a difficult constraint to enforce in practice [Virmaux and Scaman, 2018].
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A Proofs

We now prove all the results discussed in the main paper. Some of these proofs rely on the
monotonicity of the length scalarisation function (2), which we define below. The proof of these
monotonicity results follow immediately from the definition of the length scalarisation function
for a fixed reference vector η ∈ RM .

Lemma A.1 (Monotonically increasing) The length scalarisation function is a monotoni-
cally increasing function over the whole of RM , that is y � y′ =⇒ sη,λ(y) ≥ sη,λ(y′) for all
vectors y,y′ ∈ RM and any positive unit vector λ ∈ SM−1+ .

Lemma A.2 (Strongly monotonically increasing) The length scalarisation function is a
strongly monotonically increasing function over the truncated space, that is y �� y′ =⇒
sη,λ(y) > sη,λ(y′) for all vectors y,y′ ∈ D��[{η}] and any positive unit vector λ ∈ SM−1+ .

A.1 Proof of Theorem 3.1

Consider a bounded set of vectors A ⊂ RM and reference vector η ∈ RM which admits a
non-empty Pareto front surface Y int

η [A] 6= ∅. Let

A∗ = {η + sup
y∈A

sη,λ(y)λ ∈ RM : λ ∈ SM−1+ } ∈ Lη.

We will first show that this polar surface contains the Pareto front surface: Y int
η [A] ⊆ A∗. To

prove this result, we take advantage of the well-known fact that every Pareto optimal point
y∗ ∈ Y int

η [A] can be obtained by solving the following optimisation problem [Miettinen, 1998,
Part 2, Theorem 3.4.5]:

y∗ ∈ arg max
y∈Y int

η [A]

sLen(η,λ∗η(y
∗))(y) = arg max

y∈Y int
η [A]

min
m=1,...,M

y(m) − η(m)

(y∗)(m) − η(m)
. (29)

From the monotonicity of the length scalarisation function (Lemma A.1), we have that

max
y∈Y int

η [A]
sη,λ(y) = sup

y∈D�,η [A]

sη,λ(y) = sup
y∈A

sη,λ(y)

for any λ ∈ SM−1+ . Combining this result with (29), we find that

y∗ = T −1η ((λ∗η(y∗), sη,λ∗η(y∗)(y
∗))) = η + sup

y∈A
sη,λ∗η(y∗)(y)λ∗η(y∗) ∈ A∗

for all y∗ ∈ Y int
η [A], which implies the desired result: Y int

η [A] ⊆ A∗. We will now show by a
simple proof by contradiction that the other containment also holds: Y int

η [A] ⊇ A∗. Suppose
for a contradiction that there exists a vector a∗ ∈ A∗ which is not Pareto optimal, that is
a∗ /∈ Y int

η [A]. Then by the definition of weak Pareto optimality (Definition 2.4), there must
exist an element y∗ ∈ A which strongly dominates it. As the length scalarisation function
is strongly monotonically increasing over the truncated space (Lemma A.2), this implies that
sη,λ(y∗) > sη,λ(a∗) for all λ ∈ SM−1+ . This is a contradiction because a∗ ∈ A∗ and therefore it
must achieve the largest projected length for at least one positive direction λ′ ∈ SM−1+ , that is
sη,λ′(y

∗) ≤ sη,λ′(a
∗) for all y∗ ∈ A.

�
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A.2 Proof of Lemma 3.1

Consider any Pareto front surface A∗ ∈ Y∗η and any vector y ∈ D��[{η}]. We will start by
proving the first statement. For the right implication, suppose that y ∈ D�,η[A∗]. Let a ∈ A∗
be any vector such that a � y. By the monotonicity of the length scalarisation function
(Lemma A.1), we have that sη,λ(y) ≤ sη,λ(a) ≤ `η,λ[A∗] for all positive directions λ ∈ SM−1+

and especially for λ∗η(y) ∈ SM−1+ . Now we will prove the left implication. Suppose that
sη,λ∗η(y)(y) ≤ `η,λ∗η(y)[A

∗], then this implies the existence of a vector a ∈ A∗ such that

1 ≤
`η,λ∗η(y)[A

∗]

sη,λ∗η(y)(y)
=
sη,λ∗η(y)(a)

sη,λ∗η(y)(y)
= min

m=1,...,M

a(m) − η(m)

y(m) − η(m)
,

which implies a � y and therefore y ∈ D�,η[A∗]. The proof of the second statement follows
in the same way to the proof of the first statement if we replace some instances of � and ≤
with ≺≺ and <, respectively. The third and fourth statements are just the the contrapositive
of the first and second statements, respectively, because D��,η[A∗] = D��[{η}] \ D�,η[A∗] and
D�,η[A∗] = D��[{η}] \ D≺≺,η[A∗].

�

A.3 Proof of Proposition 3.1

Consider a polar surface A ∈ Lη. We will first prove the sufficiency of these two conditions.
Suppose that C1 and C2 holds, then we will show that Y int

η [A] is non-empty and Y int
η [A] = A.

Firstly, we see that C1 ensures that the set Y int
η [A] is non-empty. Whilst secondly, we see that C2

implies that the set A is indeed a Pareto front surface because we cannot find any two vectors in
this set such that one strongly dominates the other. In particular, assume for a contradiction
that there exists positive directions λ,υ ∈ SM−1+ such that η + `η,λ[A]λ ≺≺ η + `η,υ[A]υ.
This implies that η(m) + `η,λ[A]λ(m) < η(m) + `η,υ[A]υ(m), for all objectives m = 1, . . . ,M and
therefore

`η,υ[A]υ(m)

`η,λ[A]λ(m)
> 1

for all objectives m = 1, . . . ,M . The above expression contradicts C2 because

max
m=1,...,M

`η,λ[A]λ(m)

`η,υ[A]υ(m)
≥ 1,

which implies that there exist at least one objective m where the previous statement fails to
hold. We will now prove the necessity of these two conditions. Assume that A is a Pareto front
surface. Firstly, C1 has to hold because the Pareto front surface is a subset of the truncated
space D��[{η}]. To see that C2 has to hold, we reuse the arguments in the proof of Lemma 3.1.
Consider the vectors yη,λ = η+ `η,λ[A]λ ∈ A and yη,υ = η+ `η,υ[A]υ ∈ A for any two positive
directions λ,υ ∈ SM−1+ . As A is Pareto front surface, neither one of these vectors strongly
dominate the other. This implies that yη,υ − η does not strongly dominate yη,λ − η, which
implies C2:

1 ≤ max
m=1,...,M

y
(m)
η,λ − η(m)

y
(m)
η,υ − η(m)

=
sη,λ(yη,λ)

sη,λ(yη,υ)
=
`η,λ[A]

`η,υ[A]
max

m=1,...,M

λ(m)

υ(m)

for any λ,υ ∈ SM−1+ .

�
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A.4 Proof of Proposition 3.2

Consider any reference vector η ∈ RM and any strictly monotonically increasing transformation
τ : R≥0 → R. Let A,B ⊂ D��[{η}] denote two finite sets lying in the truncated space with A �
B. We will show that the length-based utility (6) satisfies the strict Pareto compliancy property:
Uη,τ [A] > Uη,τ [B]. For notational convenience, we begin by defining the set function

Sλ,τ [Y ] := max
y∈Y

τ(sη,λ(y)).

By the monotonicity of the transformation τ , we have that A � B =⇒ Sλ,τ [A] ≥ Sλ,τ [B] for
all λ ∈ SM−1+ . By the strict monotonicity of τ and τHV, we have that

Sλ,τHV [A] > Sλ,τHV [B] ⇐⇒ Sλ,τ [A] > Sλ,τ [B],

Sλ,τHV [A] = Sλ,τHV [B] ⇐⇒ Sλ,τ [A] = Sλ,τ [B].
(30)

As the hypervolume indicator (7) is strictly Pareto compliant [Zitzler et al., 2003], we have that
UHV
η [A] > UHV

η [B], which implies that

0 < UHV
η [A]− UHV

η [B] = Eλ∼Uniform(SM−1
+ )[1[λ ∈ Λ](Sλ,τHV [A]− Sλ,τHV [B])],

where Λ ⊆ SM−1+ denotes the measurable subset of positive unit vectors where Sλ,τHV [A] >
Sλ,τHV [B] and ν[Λ] > 0. Combining this result with the implications in (30), we obtain the
desired result: Uη,τ [A] > Uη,τ [B].

�

A.5 Proof of Proposition 4.1

Equipped with Assumptions 4.1 and 4.2, we will show that the expectation in (12) satisfies
the two conditions in Proposition 3.1 and therefore is a valid Pareto front surface. Firstly, C1
is satisfied because the lengths are assumed to be positive almost surely, which implies that
Eω[`η,λ[Y ∗η,f (ω)]] > 0 for all λ ∈ RM . Secondly, C2 is satisfied because Y ∗η,f (ω) ∈ Lη is a Pareto
front surface almost surely and therefore it satisfies C2 almost surely,

`η,λ[Y ∗η,f (ω)] max
m=1,...,M

λ(m)

υ(m)
≥ `η,υ[Y ∗η,f (ω)],

which implies that the expectation also satisfies C2,

Eω[`η,λ[Y ∗η,f (ω)]] max
m=1,...,M

λ(m)

υ(m)
≥ Eω[`η,υ[Y ∗η,f (ω)]],

for any two positive directions λ,υ ∈ SM−1+ .

�

A.6 Proof of Proposition 4.2

To prove that the α-quantile (15) is a valid Pareto front surface under the given assumptions,
we can show that it satisfies the two conditions in Proposition 3.1. This exercise is simply a
repeat of the arguments in Appendix A.5, with every instance of the expectation Eω[·] being
replaced with the α-quantile Qω[·, α] instead.

�
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A.7 Proof of Lemma 5.1

Consider a non-empty set of indices I ⊂ [M ] with |I| = P and a vector v ∈ VM−P+ . We have
the following equivalence:

PI,v[SM−1+ ] = {PI(λ) ∈ RP : λ ∈ SM−1+ and P[M ]\I(λ) = v}

= {
√

1− ||v||2L2λ ∈ RP : λ ∈ SP−1+ }

=
√

(1− ||v||2L2)� SP−1+ .

The fact that this final set is a P -dimensional Pareto front surface with the zero reference vector
follows from Example 3.3 and the fact that SP−1+ ∈ Y∗0P

and
√

(1− ||v||2L2) > 0.

�

A.8 Proof of Proposition 5.1

Consider a Pareto front surface A∗ ∈ Y∗η, any non-empty set of indices I ⊂ [M ] with |I| = P ,

any vector v ∈ VM−P+ , we will show that the projected Pareto front surface PI,v[A∗] ∈ LPI(η)

is a P -dimensional Pareto front surface with the reference vector PI(η) ∈ RP . To accomplish
this, we will show that this set satisfies the two conditions in Proposition 3.1. Firstly, C1 is
satisfied because the projected lengths of A∗ are positive and

√
1− ||v||2L2 > 0. Secondly, to

see that C2 is satisfied, we begin by noting that A∗ satisfies C2 because it is a valid Pareto
front surface, which implies

`η,φI(v,λ)[A
∗]

`η,φI(v,υ)[A
∗]

max
m=1,...,M

φ
(m)
I (v,λ)

φ
(m)
I (v,υ)

≥ 1 (31)

for any λ,υ ∈ SP−1+ . As the vectors on the indices of [M ] \ I are fixed to be v ∈ VM−P+ and
SP−1+ is a Pareto front surface, we see that the maximum ratio on the set of indices [M ] is
achieved on the subset I:

max
m=1,...,M

φ
(m)
I (v,λ)

φ
(m)
I (v,υ)

= max
m∈I

φ
(m)
I (v,λ)

φ
(m)
I (v,υ)

. (32)

By substituting (32) into (31) and using the definition of the reconstruction function in (25),
we see that C2 does indeed hold for the projected Pareto front surface:√

(1− ||v||2L2)`η,φI(v,λ)[A
∗]√

(1− ||v||2L2)`η,φI(v,υ)[A
∗]

max
m=1,...,P

λ(m)

υ(m)
≥ 1

for any λ,υ ∈ SP−1+ .

�

A.9 Extreme value theory

We begin this subsection by first recalling the statement of Fisher–Tippett–Gnedenko theo-
rem [Fisher and Tippett, 1928, Gnedenko, 1943] and the Balkema–de Haan–Pickands theorem
[Balkema and de Haan, 1974, Pickands, 1975] in Theorem A.1 and Theorem A.2, respectively.
The proof of these two results can be found in standard textbooks; for example, see the proofs
presented by Leadbetter et al. [1983, Theorem 1.4.2] and Leadbetter et al. [1983, Theorem
1.6.2], respectively. Afterwards, we move on to Appendix A.9.1, where we present the proof of
Proposition 5.2.
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Definition A.1 (Maximum domain of attraction) A cumulative distribution function F :
R → R is in the maximum domain of attraction (MDA) of a cumulative distribution function
H : R→ R, denoted by F ∈ MDA(H), if there exist two sequences of real numbers aN > 0 and
bN ∈ R such that

lim
N→∞

P
[

max({Y1, . . . , YN})− bN
aN

≤ x

]
= lim

N→∞
F (aNx+ bN)N = H(x)

for x ∈ R, where Y, Y1, . . . , YN ∈ R denotes a collection of independent and identically dis-
tributed random samples from the distribution F .

Theorem A.1 (Extreme value distribution) [Fisher and Tippett, 1928, Gnedenko, 1943]
If the cumulative distribution function F : R → R is in the MDA of a non-degenerate distri-
bution function H : R → R, that is F ∈ MDA(H), then H(x) = exp(−(1 + ξ(x−µ

σ
))
−1/ξ
+ ) is

a generalised extreme value distribution, where ξ ∈ R, µ ∈ R and σ > 0, denotes the shape,
location and scale parameter, respectively.

Definition A.2 (Conditional excess distribution) Let Y ∈ R denote a random variable
with a distribution function F : R → R. The corresponding conditional excess distribution
function at some level u ∈ R is given by

Fu(x) := P[Y − u ≤ x|Y > u] =
F (u+ x)− F (u)

1− F (u)
,

for any x ∈ [0, yF − u], where yF := sup{x ∈ R : F (x) < 1} denotes the finite or infinite right
endpoint of the distribution function F .

Theorem A.2 (Generalised Pareto distribution) [Balkema and de Haan, 1974, Pickands,
1975] If the cumulative distribution function F : R → R is in the MDA of a generalised ex-
treme value distribution, F ∈ MDA(Hξ,µ,σ), then there exists a positive, measurable function10

β : R→ R>0 such that the following limit holds:

lim
u→yF

sup
x∈[0,yF−u]

|Fu(x)−Gξ,β(u)(x)| = 0

where Gξ,β(x) = 1 − (1 + ξx
β

)
−1/ξ
+ denotes the distribution function of a generalised Pareto

distribution with shape parameter ξ ∈ R and rate parameter β > 0.

A.9.1 Proof of Proposition 5.2

As described in Section 5, the projected lengths along any positive direction λ ∈ SM−1+ is given
by the maximum of the length scalarised values

`η,λ[Y int
η [{Y1, . . . , YN}]] = max({sη,λ(Y1), . . . , sη,λ(YN)}). (33)

As a Weibull distributed random variable is non-negative and η = 0M ∈ RM , we have that
sη,λ(Yn) = minm=1,...,M Y (m)/λ(m) for n = 1, . . . , N . By a standard calculation, we see that the
Weibull distribution is closed under scaling,

P
[
Y (m)

λ(m)
≤ x

]
= 1− exp(−(β(m)λ(m)x)α),

10Suppose that F (x)N ≈ Hξ,µ,σ(x) for large N , then Coles [2001, Theorem 4.1] suggest that we can set
β(u) = σ + ξ(u− µ) > 0 for sufficiently large u ∈ R.
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which implies Y (m)/λ(m) ∼Weibull(α, β(m)λ(m)). Similarly, we can show that the minimum of a
collection of independent Weibull distributed random variables is also Weibull distributed:

P
[

min
m=1,...,M

Y (m)

λ(m)
≤ x

]
= 1−

M∏
m=1

(
1− P

[
Y (m)

λ(m)
≤ x

])
= 1− exp

(
−

M∑
m=1

(β(m)λ(m))αxα
)
,

which implies that sη,λ(Yn) ∼Weibull(α, (
∑M

m=1(β
(m)λ(m))α)1/α) for n = 1, . . . , N . This implies

that the distribution of the projected lengths (33) are equivalent to the distribution of the
maximum of a collection of independent and identically distributed Weibull distributions. The
final result is then obtained by repeating a standard calculation—confer with Embrechts et al.
[1997, Table 3.4.4].

�
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